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Abstract

We want to apply Funahashi’s theorem [Fun89] in order to approximate the
Tp operator for first-order (normal) logic programs P via 3-layer feedforward
networks. I.e. we need to understand Tp as a continuous function on the reals.

We will need to study some preliminaries from set-theoretic topology first
— main reference is [Wil70]. We will then work towards a very recent research
result from [HS00, HHSOx], which extends results from [HKS99]. We close with
some further considerations about the methods and results.

Some exercises are of central importance for subsequent material. They are marked
with a ().
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1 Topologies

In the following, let X be a set. By P(X) we denote the powerset of X. Until further
notice, Bp will denote the set of all atoms of some first-order language — we think of
it as the first-order language underlying some logic program P. The set Ip = P(Bp)
is the corresponding set of all interpretations.

1.1 Open sets, closed sets, neighborhoods
1.1 Definition A topology O on X is a subset of P(X) with the following properties:
(T1) 0, X €O

(T2) If I is a set and O; € O for each i € I, then |J
then O, N0, € O.

O; € O.item If 0,05 € O,

i€l

The pair (X, Q) (or simply X) is called a topological space. Each O € O is called
open in O. A set A C X is called closed in O if its complement “A is open in O. A
set U C X is called a neighborhood of a point x € X if x € O C U for some O € O.

1.2 Example (X,P(X)) and (X, {0, X}) are topologies on X, called the discrete
and the indiscrete topology, respectively.

Exercise 1 (x)
Determine all topologies on the two-point set {0,1}.

Exercise 2
Show that a set is open if and only if it contains a neighborhood for each of its points.

1.2 Bases and subbases

1.3 Definition Let (X, Q) be a topological space. A base of O is a subset B C O
such that each O € O is the union of members of B. A subbase of O is a subset
S C O such that the set of all finite intersections of members of S is a base for O,
or equivalently, if each member of O is the union of finite intersections of members

of S.

1.4 Proposition Let X be a set. B C P(X) is a base of a topology if and only if
UB = X and for all U,V € B and each x € U NV there exists W € B with v € W
and W C U N V. Furthermore, if B is a base of O, then O is the smallest topology
containing each set in B.

Proof: If B is a base for O, U,V € Band xr € UNV € O, then U NV is the union
of members of B and hence there exists W € B with x € W C U N V. Conversely,
let B be a family with the specified property and let O be the family of all unions
of members of B. We obtain |JB = X € B and |J0 = 0 € B which shows that (T1)
holds. To see (T2), note that a union of members of O is itself a union of members of
B. For (T3), Let U,V € O and z € UNV. Choose U', V' € B such that € U' C U



and x € V' CV,and then W e Bwithz e W CU' NV ' CUNV.SoUNV can be
expressed as a union of members of B. To prove the last statement, note that each
topology containing B must contain all unions of members of B, i.e. must contain O.
Since O is itself a topology, it is the smallest topology containing B. [

1.5 Proposition Let X be a set. Every () # S C P(X) is the subbase of a topology.
Furthermore, if O is a topology with subbase § then O is the smallest topology which
contains every set in S.

Proof: Let a set § be given and let B be the set of all finite intersections of member
of S. Then X = (0 € B and the intersection of two members of B is again a member
of B and Proposition 1.4 yields that B is the base of a topology. Let B be the base of a
topology O. Since every base of a topology which contains S must contain B, it must
also contain Q. Since O is itself a topology, it is the smallest topology containing S.

[ |

1.6 Example (a) The set of all open intervals of R is the base for a topology on R,
called the natural topology on R.

(b) Let (X, d) be a metric space. A set of the form B.(z) = {y € X : d(x,y) < x} is
called an (open) ball in X. The set of open balls forms the base for a topology.
This topology is called the topology induced by d and is denoted by Oy.

Exercise 3 (x)
Show that the statements from FExample 1.6 are correct.

1.7 Example ([Sed95]) Consider the space of interpretations Ip = P(Bp). For
AeBpset GA)={Ie€lp: Acl}and G(—A)={I € Ip: A ¢ I}. The topology
with subbase {G(A) : A € Bp} is called the Scott topology on Ip. The topology with
subbase {G(A) : A € Bp} U{G(—A) : A € Bp} is called the atomic topology @) on Ip.

1.8 Proposition Show that the sets of the form G(Ly A---AL,) ={l € Ip: 1 |

LiA--- ALy}, where Ly, ..., L, are literals, form a base for the atomic topology on
Ip.

Proof: Obviously, {I € Ip: I = LiA---AL,} =, G(L;),s0 G(LiA---AL,) € Q,
so the result follows from Proposition 1.4. [ |

Exercise 4
The natural metric on R is defined by d(z,y) = |z — y|.

(a) Show that the natural metric induces the natural topology on R.

(b) Show that the set of all balls of the form B.(x), where e,z € Q, forms a base for
the natural topology on R.



1.3 Subspaces and product spaces

1.9 Definition Let Y C X. The subspace topology on Y (induced by the topology
O on X)) consists of all sets of the form O NY, where O € O.

Exercise 5
Show that the subspace topology is indeed a topology.

Exercise 6
Let (X, d) be a metric space and Y C X. Defined : Y xY — R by setting d'(z,y) =

d(z,y).
(a) Show that d' is a metric.

(b) Show that the topology induced by d' coincides with the subspace topology on Y
induced by the topology O4 on X.

Cantor set C is a subset on the real line which consists of all real numbers which
can be written in the form N
i=1

where a; € {0,2} for all i. The representation of each a € C as such a power series
is unique (why?), and we can hence identify each a € C uniquely with a sequence
(a;)ien. Now define d : C x C — R by setting d((a;);, (b;);) = 27", where n is the
smallest natural number such that a, # b,.

Exercise 7 (x)
Show that the function d just defined is an ultrametric on C, i.e. that it is a metric,
and furthermore for all x,y,z € C we have d(z, z) < max{d(z,y),d(y,2)}.

1.10 Proposition The topology induced by d coincides with the subspace topology
which C inherits from R.

Proof: Recall that for |r| <1 we have Y1 1’ = % and Y0, 1" = L.
We first show that d(z,y) < 27" implies |z — y| < 3=™~1_ Indeed, let d(z,y) <
2-(+Y)_ Then (z;) and (y;) agree up to the n-th element and differ on the (n + 1)-st

element. But this means that

|z —y| = vaz'?)ﬂ — Zyi?fl = Z (237" —uy37")| < Z 237" — ;37|
i=1 i=1 i=n+1 i=nt+1

= D> lm—wm[37< Y 237 =20 3‘i=2'<%‘<%‘2-13n>>

1=n+1 1=n+1 1=n+1
=37 <37 (1),

Now let O = {y : |z — y| < €} be a basic open set in the subspace topology on
C. Then for each z € O there exists n such that U, = {y : |z —y| < 3"7'} C O,
and by the assertion just shown and by setting O, = {y : d(x,y) < 27"} we obtain
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z€ 0, CU, CO.Hence O =/
induced by d.

Conversely — by contraposition —, if d(z,y) > 27", then for the least k£ € N for
which (z;) and (y;) differ on the k-th element, we have & < n. Consequently,

weo Oz which shows that O is open in the topology

== (-3 = S

= |(zr — k)3~ +Z T — Y;)

i=k+1

By symmetry, we can assume without loss of generality that x; = 2 and y; = 0, so
that

o=y > (23— | > (@i —y)37 || > 23— Y 2.37
i=k+1 1=k+1

We have just shown by contraposition that |z —y| < 37™ implies d(z,y) < 27™.
Now let O = By-«(x) be a basic open set with respect to d, and let z € O
and U, = {y : d(z,y) < 27 "}. Since d is an ultrametric we obtain d(y,z) <
max{d(y,z2),d(z,z)} < 27" for all y € U,, and hence U, C O. By the assertion
shown in the previous paragraph we get O, C U, for O, = {y : |y — 2| < 37"},
and hence O = |J,., O. which shows that O is open with respect to the subspace
topology which C inherits from R. |

Exercise 8 (x)
Show that the collection of sets of the form {y € C : d(y,z) < 27"} is a base of (C,d),
and the collection of sets of the form {y € C: |x —y| <3 "} is a base of (C,|-|).

1.11 Definition Cantor set endowed with the subspace topology inherited from R
is called Cantor space.

Given a topological space (X, O) and a set Y, let XY denote the set of all functions
f:Y = X.Fory €Y we write f, for f(y), and we can identify functions f € XYV
with families (f,)yey of elements of X.

1.12 Definition A base for the product topology on XV is given as follows. The sets
of the base are exactly the sets of the form

{fGXY:nyOy},
where O, € O for all y € Y and O, = X for all but finitely many y.

1.13 Proposition Let 2 be the set {0, 1} endowed with the discrete topology. Then
the product topology on 287 coincides with the atomic topology on Ip.



Proof: We need to identify 287 and Ip first. This is done by the usual identification
of f: Bp — 2 with {A € Bp : f(A) = 1}, or conversely, by identifying each
{A4,...,A,} € P(Bp) with the function f with f(4;) = --+ = f(A4,) = 1 and
f(B) = 0 for all other B. Each basic open set

GAIAN- - NAZA-BIAN---ABp)={l€lp|IEA N - NAAN-ByA---ANBp},
where the A; and B; are atoms, thus coincides exactly with the basic open set

{f €257 f(A) =1foralliand f(B;) =0 for all 5}.

Exercise 9
Consider the topological space S = ({0,1},{0,{1},{0,1}}), called Sierpinski space.
Show that the product topology on SPP coincides with the Scott topology on Ip.

1.4 Convergence and continuity

1.14 Definition We say that a sequence (x,)nen in a topological space (X, Q) con-
verges to some v € X, written limz, = x or x,, — =z, if for each open neighborhood
O of z there exists some ng € N such that z,,, € O for all m > n. We call x a limit of

(xn)neN.

Exercise 10
Show that in Definition 1.14 it suffices to consider basic or subbasic open neigh-
borhoods (i.e. open neighborhoods which belong to some fized base or subbase of the
topology O ).

Exercise 11
Show that a sequence converges with respect to a metric if and only if it converges
with respect to the topology induced by the metric.

1.15 Proposition Sequences in metric spaces have at most one limit. This is not
true for all topological spaces.

Proof: Assume z,, — z and x, — y. Then d(z,y) < d(z,,) + d(x,,y) for all n, and
since d(x,x,) + d(z,,y) — 0 we have d(z,y) = 0, hende z = y.

For the second part, consider the indiscrete topology on {0, 1}. Then the constant
sequence 0,0, ... converges both to 0 and to 1. [

1.16 Proposition Consider Ip endowed with the atomic topology ). Then a se-
quence (I,)nen in Ip converges in @ to some I € Ip if and only if the following two
conditions are satisfied.

(1) For each A € I there exists n; € N such that for all m > n; we have A € I,.

(2) For each A ¢ I there exists ny € N such that for all k¥ > ny we have A & Ij.



Proof: First assume I,, — I in (). Let A € Bp be arbitrarily chosen. If A € I then
I € G(A), hence there exists ny such that I,,, € G(A) for all m > ny, which suffices.
If A¢ I then I € G(—A), hence there exists ny such that I € G(—A) for all k& > no,
which suffices.

Conversely, assume that conditions (1) and (2) hold relative to (I,,) and I. Let U
be a basic open neighborhood of I, and of the form G(A; A---ANA, A=ByA---ABy,),
which implies for all 7 and j that A; € I i and B; ¢ I. By assumption, we can choose
ng such that for all I,, with n > ny and for all ¢ and j that A; € I,, ¢ and B; & (I,,),
hence I, € U for all n > nq as required. |

Exercise 12

Consider Ip endowed with the Scott topology. Show that any sequence (I,)nen in Ip
converges, and that the set of its limits achieves a greatest element. Furthermore,
if there exists some ng € N such that the subsequence (I,)n>n, S monotonically
increasing, then the greatest limit of the sequence (Ip)pen is sup{Il, : n > ng}.

1.17 Definition Let (X, Q) and (Y, O') be topological spaces. A function f : X — Y
is called continuous at x € X if f~1(O) € O for each open neighborhood O € O’ of
f(z). A function is called continuous if it is continuous at all points of its domain.

1.18 Proposition Let f be continuous and assume z, — . Then f(z,) = f(x).

Proof: Let U be some open neighborhood of f(z). Then f~'(U) is an open neigh-
borhood of x. Hence there exists ng such that x,, € U for all n > ny. Consequently,
f(z,) € U for all n > ny. |

Exercise 13

Show that it suffices to consider basic or subbasic open neighborhoods in Definition
1.17.

Let (X,d) and (Y,d’) be metric spaces. A function f : X — Y is (metrically)
continuous (with respect to d and d') if for each x € X and for all £ > 0 there exists
d > 0 such that for all y with d(x,y) < ¢ we have d(f(z), f(y)) < e.

Exercise 14
Show that a function is metrically continuous if and only if it is continuous with
respect to the topologies induced by the metrics.

Exercise 15
Show that a function on Ip is continuous with respect to the Scott topology if and only
if for any monotonically increasing sequence (I,)nen we have f(sup I,) = sup f(1,).

2 Representing first-order logic programs by arti-
ficial neural networks

2.1 Applying Funahashi’s Theorem

We assume for the following, that Bp is (countably) infinite.
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2.1 Definition Let X and Y be topological spaces. A function ¢ : X — Y is called
a homeomorphism if it is a continuous bijection and ! is also continuous. In this
case, we call X and Y homeomorphic.

2.2 Theorem The following spaces are homeomorphic.
(i) (€, 0.

)
(ii) (C,Oy), where d is as in Proposition 1.10.
(iil) (Ip, Q).

)

(iv) 2B7 where 2 carries the discrete topology.

Proof: It follows from Proposition 1.10, that (i) and (ii) are homeomorphic — the
identity function acts as homeomorphism. Likewise, it follows from Proposition 1.13
that (iii) and (iv) are homeomorphic, and the bijection f — {A € Bp : f(A) = 1}
acts as homeomorphism.

We show that (ii) and (iii) are homeomorphic, which finishes the proof. First
choose an arbitrary bijective level mapping [ : Bp — N, and define

R:lp—C:ImY gr(I7(1) 37,

=1

where gr(A) =2if A € I and g;(A) =0if A ¢ I. Obviously, R is a bijection between
Ip and C. We show that it is a homeomorphism.

Let B = By-«(x) be an arbitrary basic open ball with respect to d, and let
= (x;)ien with z; € {0,2}. Then for all y = (y;);en € B we have that x; = y; for all
i < n. Now consider the open set G = Q(hl(xl) A« Ahyp(z,)), where h;(0) = =71 (7)
and h;(2) = [7'(i) for all i. We obtain R™!(B) = G. Since B was arbitrarily chosen,
we have shown that R is continuous.

In order to show that R™! is continuous, let G = G(L) be an arbitrary subbasic
open set with respect to @ and let [(L) = k. Assume first that L = A is an atom.
Let K be the set of all elements of C of the form (z;);eny with x, = 2. Consider
U = Uex {Bo-w+n ()}, which is open with respect to d, and R(G) = U. If L is a
negated atom, then the argument is similar. This completes the proof. [ |

Exercise 16
Complete the proof of Theorem 2.2 by spelling out the argument for the case when L
1S a negated atom.

For sets X, Y, and a function f : X — X and a bijection g : X — Y, define
g(f) Y =Yy g(flg(y)).

Exercise 17
Let (X,0) and (X', O") be topological spaces and v : X — X' be a homeomorphism.
Show that f: X — X is continuous if and only if L(f) is continuous.



2.3 Theorem (Funahashi) Suppose that ¢ : R — R is non-constant, bounded,
monotone increasing and continuous. Let K C R" be compact, let f : K — R
be a continuous mapping and let ¢ > 0. Then there exists a 3-layer feedforward
network with activation function ¢ whose input-output mapping f : K — R satisfies

max,cx d(f(2), f(z)) < &, where d is a metric which induces the natural topology on
R.

2.4 Theorem (Main Result) Let P be a program such that Tp is continuous in
@, and let © be a homeomorphism from (Ip,, Q) to C. Then T (more precisely +(1p))
can be uniformly approximated (in the sense of Funahashi’s theorem) by input-output
mappings of 3-layer feedforward networks.

Proof: Since Tp is continuous in @), and ¢ is a homeomorphism, we obtain that «(7p)
is continuous as a function in Cantor space C. Since C is a compact subspace of R,
the result follows by applying Funahashi’s theorem. |

2.5 Research Problem Theorem 2.4 is not constructive, i.e. we currently do not
know how to obtain approximating networks from given programs. Ideally, we would
like to be able to read off network parameters directly from the program.

2.6 Research Problem How to use Theorem 2.4 as the base for an integrated
neural-symbolic learning system?

Exercise 18
Show that C is compact as a subset of R.

The choice of homeomorphism using the ternary number system is very special.
Indeed, there exist uncountably many homemomorphisms of Cantor space with itself.

Also, the representation of Cantor space in the real line which we used is very
special. There exist many other ways of characterizing Cantor space as a subset of
the reals.

2.7 Theorem ([Wil70]) The second countable totally disconnected compact Haus-
dorff spaces which are dense in itself are exactly those topological spaces which are
homeomorphic to Cantor space.

A space X is second countable iff it has a countable base. It is Hausdorff (or T3) iff
for all = # y there exist open neighborhoods O of x and U of y such that ONU = (.
It is compact iff for each collection (O;);er of open sets with X C |J,; O; there exists
a finite subset K C I such that X C J . Ok. It is dense in itself (sometimes
called perfect, or without isolated points), iff no singleton set (containing exactly one
element) is open. It is totally disconnected iff for each x # y there exist disjoint open
neighborhoods U of x and V' of y such that U UV = X.

Exercise 19
Show that Cantor space is a second countable totally disconnected Hausdorff space
which is dense in itself.



2.2 Tp and the Cantor topology

2.8 Definition For A € Bp let B4 denote the set of all atoms which occur in bodies
of ground instances of clauses with head A. We call Tp locally finite for A € Bp and
I € Ip if there exists a finite subset S = S(A,I) C B4 such that for al J € Ip which
agree with 7 on S we have A € Tp(J) iff A € Tp(I). We say that Tp is locally finite
if it is locally finite for all A € Bp and all I € Ip.

Exercise 20
Show the following.

(a) If A € Tp(I), then Tp is locally finite for A and I.

(b) Tp is continuous in @Q if and only if it is locally finite for all A and I with
A& Tp(I).

2.9 Theorem TP is continuous in @ if and only if it is locally finite.

Proof: For A € Bp, let B4 denote the set of all atoms which occur in bodies of
ground instances of clauses of P with head A.

Assume first that Tp is locally finite. Let I € Ip, let A € Bp, and let Gy = G(A)
be a subbasic neighbourhood of Tp(I) in Q. Since Tp is locally finite, there is a finite
set S C By such that Tp(J)(A) = Tp(I)(A) for all J € (g G(B). By finiteness of
S, the set (\cq G(B) is open and contains I, and this suffices for continuity of Tp.

For the converse, assume that Tp is continuous in () and let A € Bp and I € Ip
be chosen arbitrarily. Then G2 = G(A) is a subbasic open set, so that, by continuity
of Tp, there exists a basic open set G; = G(By) N---NG(By) with Tp(G1) C Gs.
In other words, we have Tp(J)(A) = Tp(I)(A) for each J € (e G(B), where
S" = {By,..., B} is a finite set. Note that the value of Tp(.J)(A) depends only on
the values J(A) of atoms A € By. So, if we set S = S'NBy, then Tp(J)(A) = Tp(I)(A)
for all .J € (geg G(B) which is to say that Tp is locally finite for A and I. Since A
and [ were chosen arbitrarily, we obtain that T is locally finite. |

Exercise 21
Show that Tp is continuous i @Q if P does not contain function symbols of arity
greater than 0.

Exercise 22

Given a logic program P, a local variable is a variable occurring in a body atom
but not in the corresponding head. A program is covered if it does not contain local
variables.

(a) Show that Tp is continuous in () whenever P is covered.
(b) Does the converse of (a) also hold?

Exercise 23

Let P be a logic program and let | be an injective level mapping for P. Show the
following: If for each A € Bp there exists n € N such that [(B) < n for all B € By,
then Tp is continuous in Q).
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2.10 Proposition Let I, M € Ip. If TR(I) — M in @, then M is a model of P. If
furthermore Tp is locally finite, then M is a supported model of P (i.e. a fixed point
of Tp)

Proof: Suppose Tp(I) — M in @ for some I € Ip. We have to show that
Tp(M) C M. Let A € Tp(M). By definition of Tp, there exists a ground instance
A+ Ay, ..., Ay, By,...,B;, of a clause in P with Ay € M and B, ¢ M for
k=1,...,k,l=1,...,l;. By Proposition 1.16, there is an ny € N, such that for all
n > ngy, Ax € TE(I) and B, ¢ TE(I) for all k,[. By definition of Tp and the above
clause we have that A € Tp'(I) for all m > ny + 1. Hence, A € TE(I) eventually and
therefore, by Proposition 1.16 again, A € M, which proves the first statement.

The second statement follows by Proposition 1.18. [

Exercise 24
Show the following: If I is a supported model of P, then there exists K such that
TE(K) — I in Q.

Exercise 25
Does the following hold? If M is a model of P then there exists K such that TE(K) —
I in Q.

2.11 Proposition Let P be a normal logic program and let Iy € Ip be such that the
sequence (I,), with I,, = T{(I,), converges in @) to some M € Ip. If, for every A € M,
no clause whose head matches A contains a local variable, then M is a supported
model.

Proof: We have to show that M C Tp(M). So let A € M. By convergence in @
and Proposition 1.16, there exists ng € N such that A € Tj(Ip) for all n > ny. By
hypothesis, there are only finitely many ground instances of clauses in P with head
A. Let Cy be the (finite) set of all atoms occuring in positive body literals and D,
the (finite) set of all atoms occuring in negative body literals of those clauses. Let
C1 =CyN M and Dy = Dy \ M. Since I, — M in @, there is an n; € N such that
Cy C I, and Dy € Bp\ I, for all n > ny. Since A € Tp(Imax{non.}), there is a ground
instance A < Ay,..., Ay, 0Bi,...,B;, of a clause in P with Ay, € C; C M and
B¢ Dy CBp\Mfork=1,...,k,l=1,...,1;. Hence A € Tp(M) as required. B

2.3 Acyclic programs and recurrent networks

2.12 Definition A logic program P is acyclic if there exists a level mapping [ :
Bp — N such that I(A) > [(B) for all B € B(A).

Exercise 26
Show that the programs

even(0) .
even(s(X)) :- \+ even(s(X)).

11



and

member (X, [X|T]) .
member (X, [HIT]) :- member(X,T).

are acyclic.

2.13 Definition Let P be a program, let [ be a level mapping for P. The Fitting
metric dp on Ip is defined by dp(I, K) = 27", where I, K € Ip and n is smallest
such that I and K differ on some atom of level n.

Exercise 27
Show that dr is an ultrametric.

Exercise 28
Show that the Fitting metric induces @ if the level mapping is injective. Show that
this does not hold in general if the level mapping is not injective.

Exercise 29
Show that if P is acyclic, then TH(I) converges in Q for all I.

For the following, let ¢ be a homeomorphism from (Ip, )) onto Cantor space. Let
P be a logic program such that Tp is continuous in @, and denote ¢(Tp) by F. Let
f denote the input-output function of a corresponding network with error £, in the
sense of Theorem 2.4.

Exactly as for propositional programs, we want to endow the feedforward network
resulting from Theorem 2.4 with recursive links, such that F' can be iterated.

Assume furthermore for the following that F'is Lipschitz-continuous, that is, there
exists A > 0 such that for all z,y € C we have d(F(z), F(y)) < Ad(z,y).

Exercise 30
Show that Lipschitz-continuity implies continuity in any metric space.

For z,y € C we obtain
d(f(z), F(y)) < d(f(z), F(z)) + d(F(x), F(y)) < e+ Ad(z,y). (1)
Now let = € C be arbitrarily chosen. By Equation (1) we obtain
d (f*(z), F*(z)) < e+ M(f(2), F(z)) < e+ Ae. (2)
Inductively, we can prove that for all n € N we have

(@), F"(2) e+ Aet -+ X" le == (ZA) =i

Thus, we obtain the following bound on the error produced by the recurrent network
after n iterations, assuming that d is the natural metric on R.

12



2.14 Theorem With the notation and hypotheses above, for any I € Ip and any
n € N we have Y

() = dTp(D)] < e
Proof: Note that «(T5(I)) = F"(¢(I)), and the assertion follows from Equation (3)
since d is the natural metric on R. [

2.15 Corollary If F' is a contraction on C, so that A < 1, then (F*(.(I))) converges
for every I to the unique fixed point x of F' and there exists m € N such that for all
n > m we have

() — 2] < e

Proof: The convergence follows from the Banach contraction mapping theorem. The

inequality follows immediately from Theorem 2.14 using the expression for limits of
geometric series as in the proof of Proposition 1.10. [ |

2.16 Remark It was shown in [HKS99], that we can assure the hypotheses of Corol-
lary 2.15 as follows. We embed Ip into R by using the quaternary number system
with digits 0 and 1, i.e. we use the representation of Cantor set as the set of all real
numbers which can be written in the form Y >° @;47", where a; € {0,1} for all i. It
was shown in [HKS99], that for every program which is acyclic with respect to the
bijective level mapping used for the embedding ¢, we have that +(Tp) is a contraction
on C with respect to the natural metric from R. Thus, in this case the hypotheses of
Corollary 2.15 are satisfied.

2.17 Remark In [BHO04] an entirely different approach was taken to representing
first-order logic programs as artificial neural networks. The resulting architecture
is entirely different, very specific, but uses standard Gaussian activation functions.
Continuity of Tp with respect to the Cantor topology, and Lipschitz-continuity of
(Tp) also play a major role there.

2.18 Research Problem Can we cast the results from Remark 2.17 into an inte-
grated neural-symbolic learning system?

3 Further reading

[Wil70] is an excellent book on set-theoretic topology. The Cantor topology was in-
troduced to logic programming in [Bat89, BS89b, BS89a] and further studied in
[Sed95, Sed97]. It appears basically every time when iterative behaviour of Tp for
normal P is being studied, one may want to consult [Hit01, HS03]. There is a re-
sult due to Hornik, Stinchcombe and White [HSW89], which generalizes Funahashi’s
(Theorem 2.3) in that it provides an approximation result for measurable functions.
The implications of this remain to be worked out, and this is briefly discussed in
[HHSOx].
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