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Abstract

We study classes of programs, herein called unique supported-model classes, with
the property that each program in the class has a unique supported model. Elsewhere,
the authors examined these classes from the point of view of operators defined relative
to certain three-valued logics. In this paper, we complement our earlier results by
considering how unique supported-model classes fit into the framework given by various
classes of programs in several well-known approaches to semantics.
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1 Introduction

Logic programming is concerned with the use of logic as a programming language. The main
manifestation of this computing paradigm is via the various versions of Prolog which are now
available, in which computation is viewed as deduction from sets of Horn clauses, although
there is also growing interest in the related form known as answer set programming, see [14].
The reference [1] contains a good survey of the growth of logic programming over the last
twenty-five years both as a stand-alone programming language and as a software component
of large information systems.

One advantage a logic program P has over conventional imperative and object-oriented
programs is that it has a natural machine-independent meaning, namely, its logical meaning.
This is often referred to as its declarative semantics, and is usually taken to be some “stan-
dard” model canonically associated with P. Unfortunately, there are often many possible
choices of the standard model such as the well-founded model, see [8], the stable model, see
[9], the perfect model, see [16], the weakly-perfect model, see [16] again, and so on, which
do not in general coincide and all of which have a claim to be “the natural choice” depend-
ing on one’s view of non-monotonic reasoning. It is therefore important and interesting to
know when these various models coincide since this confirms coincidence of the various ways
of considering non-monotonic reasoning. A particular case of this is the study of classes of
programs which have only one supported model, for it is reasonable to expect that many of
the standard models will coincide for such programs, and indeed we show here that this is
sometimes the case and examine the extent to which it is so.
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The supported-model semantics or Clark-completion semantics [6] for logic programs is
a very natural way of assigning meaning to logic programs. However, in contrast with some
of the other semantical approaches mentioned above, a program can have several different
meanings under the supported-model semantics, a property which it shares with its refine-
ment, the stable model semantics [9]. Whether this is to be thought of as a weakness or a
feature depends, of course, on one’s point of view, and this is discussed in [14]. Nevertheless,
some classes of programs which have been discussed in the literature have the property that
each program in the class has a unique supported model. Such classes were called uniquely
determined in [3], but are called here by the more revealing name unique supported-model
classes and loosely denoted by usm (we sometimes write P € USM to indicate that P has
a unique supported model). It is these classes which form the main object of study here.

Usm classes include some programs which have been studied in the context of termination:
acyclic and acceptable programs [2] for example, and some straightforward generalizations
of these such as the locally hierarchical programs [5]. In the earlier paper [11], we gave a
unifying approach to some unique supported-model classes using operators in three-valued
logics which, amongst other things, led to the definition of the usm class of all ®*-accessible
programs. In fact, the definition of these programs was partly motivated by the study in [15]
of the connections between acceptability and stratifiability. Indeed, the class of ®*-accessible
programs is remarkable in that not only does each program in it have a unique supported
model, but in addition it is computationally adequate in the sense that every partial recursive
function can be implemented, under Prolog, by such a program. This does not hold for the
subclass of acceptable programs which always terminate under the Prolog selection rule.

Thus, by working with usm classes, one is working in a setting which is, semantically, rel-
atively unambiguous, and one may still study classes of programs which range from having
strong termination properties to full computational adequacy. The approach in [11] men-
tioned earlier led to a comparison of several usm classes and the determination of some of
their distinguishing properties. It is the main objective of this paper to complement these re-
sults by examining how usm classes fit into the framework given by other classes of programs
and other approaches to semantics.

The paper is structured as follows. In Section 2, after some preliminaries, we will define
®-accessible programs which generalize the ®*-accessible programs mentioned above. An
alternative characterization of these will be given in Section 3. In Section 4, we will study
®-accessible programs in the context of weak stratification and we will see that for these
programs the supported, well-founded, weakly-perfect, and stable model semantics coincide.
It will also be shown that this result cannot be generalized to all programs with unique
supported models. Finally, in Section 5, we discuss some of the conclusions which can be
drawn from our results.

2 Preliminaries

We study normal logic programs P, that is, finite sets of clauses of the form A < Lq,... L,
which may be written in the form A + body, where A is an atom and the L; are literals
drawn from the underlying first order language £ of P. We work over Herbrand preinterpre-
tations only, although many of our results carry over easily to more general settings, see [10].
Thus, Bp denotes the Herbrand base for a given program P, Ip denotes the power set of Bp
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Table 1: Truth table for Kleene’s strong three-valued logic.

which can be identified, as usual, with the set of all (Herbrand-) interpretations for P. Our
reference to standard concepts and notation in logic programming is [13]. By ground(P) we
will denote the program consisting of all ground instances of clauses in P. A level mapping
for a program P is a mapping [ : Bp — «, where « is a countable ordinal (we always extend
[ to ground literals by defining [(—A) = [(A) for all ground atoms A).

We assume that the reader is familiar with the stable model semantics [9] and the well-
founded-model semantics [8] for normal logic programs. Given a program P, the supported
models for P are the fixed points of the single-step operator Tp : Ip — Ip. As usual, Tp([)
is defined to be the set of all A € Bp such that there exists a clause A <— body in ground(P)
with the property that body is true in /. Recall that supported models can be identified with
the models of the Clark completion of P, see [6]. We also assume that the reader is familiar
with the notion of weakly-stratified program, see [4, 16].

Following [7], a partial (or three-valued) interpretation I is a pair (I, I7) of subsets of
Bp such that I™ and I~ are disjoint. Partial interpretations will be interpreted in Kleene’s
strong three-valued logic: given a partial interpretation I = (I'*,I7), atoms in I carry the
truth value true (t) in I and atoms in I~ the value false (f) in I. Atoms which are neither
in I* nor in I~ carry the truth value undefined (u). For our purposes, we only need to know
how conjunction and negation operate in this three-valued logic, and this is given by the
truth table in Table 1.

A partial interpretation (I't,17) is called total if ITUI~ = Bp, and such interpretations
can be naturally identified with elements of Ip. The set Ip3 of all partial interpretations is a
complete partial order, indeed complete semi-lattice, under the ordering (I;", I;) < (I, I))
iff I, C I and I; C I, with bottom element | = ((),). Total interpretations are in fact
maximal elements in the given ordering.

The three-valued operator ®p (see [7]) is defined as a mapping on partial interpretations
K as follows. We set ®p(K) = (I",17), where I is the set of all A € Bp with the property
that there exists a clause A < body in ground(P) such that body is true in K, and I~ is
the set of all A € Bp such that for all clauses A < body in ground(P) we have that body
is false in K; truth and falsehood being taken here relative to Kleene’s strong three-valued
logic, as already noted. We note further that ®p is monotonic, and hence we define

¢pt0 = L,
Opt(k+1) = ®p(Pptk) for any ordinal k, and
dpta = sup{P®p1f|f < a} for any limit ordinal .

2.1 Definition A normal logic program P is called ®-accessible if there exists an ordinal a
such that ®p T« is a total interpretation. The smallest ordinal with this property is called
the closure ordinal of P with respect to ®.



As observed in [11], each acceptable [2], acyclic [5], or locally hierarchical [5] program
is ®-accessible, and each ®-accessible program has a unique supported model. Indeed, in
[11], we described more variations of the operator @, each of which gives rise to a usm class
analogous to the ®-accessible programs. Of all the classes described in [11], the ®-accessible
programs form the largest.

3 ®-accessible Programs

Following the definition of acceptable programs, we define next a superclass of these denoted
by [®]. As it turns out, this class contains exactly the ®-accessible programs.

3.1 Definition Let P be a normal logic program. Then P is contained in [®] if and only if
there exists a level mapping [ for P and a (two-valued) model I for P such that the following
condition holds. Each A € Bp satisfies either (i) or (ii):

(i) There exists a clause A < Ly,..., L, in ground(P) with head A such that I = L; A
... Ly and I(A) > [(L;) foralli=1,...,n.

(ii) For each clause A < Ly, ..., L, in ground(P) with head A there exists i € {1,...,n}
such that I }= L;, I = A and [(A) > [(L;).

For every ®-accessible program, we define a canonical level mapping as follows.

3.2 Definition Let P be ®-accessible. For each A € Bp, let [p(A) denote the least ordinal
a such that A is not undefined in ®p 1 (a+1). We call the resulting mapping [p the canonical
level mapping for P with respect to ®.

3.3 Theorem The class [®] contains exactly the ®-accessible programs.

Proof: Let P be ®-accessible, let [p be its canonical level mapping with respect to @, let
a be its closure ordinal with respect to ® and let Mp = ® T a™ be its unique supported
(two-valued) model.
(a) Let A € Mp and let [p(A) = (. By definition of {p and ®p, there exists a clause
A<« Ly,...,L, in ground(P) such that the Lq,..., L, are true in &1, and hence are also
true in Mp. Again, by definition of [p, we obtain Ip(A) > Ip(L;) for all i.
(b) Let A ¢ Mp and let [p(A) = . By definition of [p and ®p, we obtain that for any clause
A« Ly,...,L, in ground(P) we must have that L; A ... A L, is false in ®p1 . So, there
must be some i such that L; is false in ®p1 3 and [p(L;) < by definition of [p, and hence
lp(A) > lp(LZ) Thus, P € [(I)]

Conversely, let P € [®] so that P satisfies Definition 3.1 with respect to a model I and
a level mapping [. We show by induction on § that any A € Bp with [(A) = [ is not
undefined in ®p 1 (B8 + 1) and, furthermore, that I and ®p 1 (8 + 1) agree on A. Indeed,
if [(A) = 0, then A must be the head of a unit clause or does not appear in any head. In
the first case, A is true in ®p 11, and in the second case, A is false in ®p 1 1. Note that
in the first case A is also true in I since condition (i) of Definition 3.1 applies and [ is a
model of P. Also, in the second case, A is also false in I since condition (ii) of Definition
3.1 applies. Next, suppose [(A) = . If there is no clause in ground(P) with head A, then
A s false in @p11 < &p 1 (8 + 1) and also false in I since condition (ii) of Definition 3.1



applies. So assume there is a clause in ground(P) with head A. By definition of [®], either
condition (i) or condition (ii) of Definition 3.1 applies. If condition (i) applies, then there is a
clause A <— Ly, ..., L, in ground(P) such that [(L,),...,l(L,) < I(A) and therefore, by the
induction hypothesis, the Ly, ..., L, are not undefined in ®p1 3 and I agrees with ®p1/ on
them. Now, since [ is a model of P and I |= Ly, ..., L,, we obtain that A is true in I and by
definition of ®p also in ®p 1. If condition (ii) applies, then for each clause A < Lq,..., L,
in ground(P) there is some i such that {(A) > I(L;) and L; is false in I. Hence we obtain
that L; is false in ®p 1/ by the induction hypothesis and it follows that A is false in both I
and ®p1 (5 +1). |

4 Comparison with Other Approaches to Semantics

When studying various classes of programs, the question naturally arises as to how such
classes relate to other known classes in the literature. From the definition, it follows imme-
diately that the usm class of all locally hierarchical programs [5] is contained in the class of
all locally stratified programs [16]. In this section, we will relate usm classes larger than the
locally hierarchical programs to the notion of weak stratification.

It was pointed out in [4, Remark 5.3] that the original definition of weakly-stratified
programs in [16] is ambiguous since the two conditions

(a) All strata of a program P consist of trivial components only.
(b) All layers of a program P are definite programs.

which were originally used for defining weakly-stratified programs are not equivalent. We will
call a program weakly stratified-a if condition (a) holds, and weakly stratified-b if condition
(b) holds. For a discussion of this, see [4, Section 5], and we refer to the same publication
for notation concerning weakly-stratified programs.

In [15], it was shown that each acceptable program [2] is weakly stratified-a. From [8,
Corollary 4.3], we immediately obtain that each ®-accessible program has a total well-
founded model, and hence is effectively stratified [4]. Again from [4, Proposition 5.4], we
obtain that a program which is weakly stratified-b, is also effectively stratified.

It is easy to see that a program which is weakly stratified-b, is also weakly stratified-a.
In the opposite direction, we have the following result.

4.1 Theorem If P is weakly stratified-a and if there exists no clause A < body in
ground(P) with =A occurring in body, then P is weakly stratified-b.

Proof: Since P is weakly stratified-a, all minimal components are trivial. Let A <— body be a
clause in a bottom layer. Without loss of generality assume that body contains some negative
literal =B, thus' B < A, with A # B by assumption. Since the component containing A is
trivial, we obtain A # B and therefore we obtain a contradiction. [ |

It is clear from the last result that a locally hierarchical program is weakly stratified-a if
and only if it is weakly stratified-b (this also holds for locally stratified programs [16]).
We next generalize the result mentioned earlier from [15].

L“<” denotes the dependency relation taking from the dependency graph of P [16].



4.2 Theorem If P is ®-accessible, then P is weakly stratified-a and the unique supported
model Mp of P is also its weakly-perfect-a model.

Proof: Let Mp be the unique supported model of P and let [ be its canonical level mapping
with respect to ®. We can also assume without loss of generality that for each level a there
exists some A € Bp with [(A) = «a.

(1) We first show that all components of the bottom stratum S(P) of P are trivial. Assume
that this is not the case, that is, that there exists a minimal component C' C S(P) which
is not trivial. Then there must be some A € C' with [(A) minimal, and some A" € C' with
A # A’ Note that A < A" and A’ < A [4, Definition 5.1]. Let B be an arbitrary atom
occurring in a ground clause with head A. Then B < A and A < A’, giving B < A’, and
therefore B < A since A" < A. Thus, by minimality of C' we obtain B € C. So all atoms
B occurring in bodies of clauses in ground(P) with head A belong to C. Since P is ®-
accessible, however, there must exist some choice of B for which we have I(B) < [(A), and
this contradicts the minimality of [(A). Note that the bottom stratum contains all atoms of
level 0, and hence is non-empty.

(2) The model M of the bottom layer is compatible with Mp, that is, if a literal is true,
respectively false, in M, then it is true, respectively false, in Mp. In order to see this, note
that for every atom A in a minimal component, the bottom layer L(P) contains all clauses
with head A and all clauses with head being any of the body atoms of clauses in the bottom
layer. Since the program P is ®-accessible, it is easy to see that the subprogram formed by
the bottom layer is also ®-accessible and has a unique supported model which is compatible
with Mp.

Now let A be an atom in L(P) which occurs negatively in the body of some clause. Since all
components are trivial, A must also be the head of the same clause so that A < A. If B is
another body atom in the same clause, then we obtain B < A and A < B which contradicts
triviality of all components. Hence, if some atom A occurs negatively in a clause in L(P),
then the clause is of the form A <— —=A. All models of L(P) must therefore assign the truth
value true to all atoms occurring negatively in L(P). The program which is obtained from
omitting all these clauses is definite and has a least model which agrees with Mp. If we add
to this model all atoms which occur negatively in L(P), we obtain the least model of L(P).
(3) We show that P/M is ®-accessible (see [4]). This is indeed the case since (2) holds, and
is easily seen by applying Theorem 3.3.

(4) We can now apply steps (1), (2) and (3) via transfinite induction as in [16], obtaining
that P is indeed weakly stratified-a and that Mp is the weakly-perfect-a model of P. Thus,
the proof is complete. [ |

4.3 Theorem Let P be ®-accessible. Then P has a unique supported model Mp which is
the unique stable model, the well-founded model, and the weakly-perfect-a model of P.

Proof: We know that Mp = ®p 1« for some ordinal v and that Mp is total. By Theorem
4.2, we know that Mp is the weakly-perfect-a model of P. By [8, Corollary 4.3], Mp = ®pT«
is a subset of the well-founded model of P, and, since Mp is total, it must coincide with the
well-founded model. By [8, Corollary 5.6], totality of the well-founded model implies that it
coincides with the unique stable model of the program. This completes the proof. |

A ®-accessible program need not be weakly stratified-b, as can be seen from the program
P consisting of the two clauses p < and p < ¢, —p. The bottom layer contains the clause
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p < ¢, —p and therefore is not a definite program. The program P is, however, ®-accessible,
even acceptable.

On the other hand, there exist programs P € USM which are not weakly perfect-a. To see
this, note that the program consisting of the three clauses p - ¢, ¢ <~ —p and p < —p has
unique supported model {p} (which is a stable model). However, it has {p, ¢} as a minimal
component which is not trivial.

The property of having a unique stable model does not carry over to USM either: the
program consisting of the two clauses p < p and p < —p has unique supported model {p}
but neither a stable model nor a total well-founded model.

5 Conclusions and Further Work

Many classes of programs are known in the literature, although the exact relationships
between them are not yet fully understood. In this respect, the paper is a contribution
towards the study of the “space” of all logic programs and the relationships between certain
classes of its members.

The ®- and ®*-accessible programs are remarkable from a semantical point of view. Both
are natural generalizations of the locally hierarchical and acceptable programs and both
classes are computationally adequate while maintaining an unambiguous semantics. They
therefore provide an interesting programming environment. The smaller class of ®*-accessible
programs is perhaps the more natural common generalization of the locally hierarchical and
acceptable programs, since it treats all clauses equally, in the spirit of these two classes [11].

The supported-model semantics seems to be satisfactory for ®-accessible programs but
not for all programs in the larger class USM. Indeed, programs in USM\ [®] may be considered
to be unnatural from a logic programming point of view since they contain mutually recursive
atoms whose truth values cannot be determined from the remaining program. Such a feature
might make sense in the context of answer set programming [14], but the extent to which
that is so remains to be seen.

It is natural to raise questions about other classes of programs which have unique (or
unique total) models under semantics other than the supported-model semantics, and the
authors are attempting to modify the approach presented here and in [11] for these purposes.
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