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Abstract

We relate two formerly independent areas: Formal concept analysis and logic of domains.
We will establish a transformation of contexts into domains, and vice-versa, such that the
notion of resolution in domains due to Rounds and Zhang (2001) corresponds to the con-
struction of concepts from contexts, as in formal concept analysis. The results shed light on
the use of contexts and domains for knowledge representation and reasoning purposes.
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1 Introduction

Domain theory was introduced in the 1970s by Scott as a foundation for programming se-
mantics. It provides an abstract model of computation using order structures and topology,



and has grown into a respected field on the borderline between Mathematics and Computer
Science [AJ94, SHLG94]. Relationships between domain theory and logic were noted early
on by Scott [Sco82], and subsequently developed by many authors, including Smyth [Smy89],
Vickers [Vic89], Abramsky [Abr91], and Zhang [Zha91]. There has been much work on the
use of domain logics as logics of types and of program correctness, with a focus on functional
and imperative languages.

However, there has been only little work relating domain theory to logical aspects of knowl-
edge representation and reasoning in artificial intelligence. Two exceptions were applications
of quantitative domain theory to the semantic analysis of logic programming paradigms stud-
ied by Hitzler and Seda [Sed97, SH99, HS99, Hit01, HSOx], and the work of Rounds and
Zhang on the use of domain logic for disjunctive logic programming and default reasoning
[ZR97, KRZ98, ZR01, RZ01]. The latter authors developed a notion of clausal logic in co-
herent algebraic domains, based on considerations concerning the Smyth powerdomain, and
extended it to a disjunctive logic programming paradigm [RZ01]. A notion of default negation,
in the spirit of answer set programming [MT99] and Reiter’s default logic [Rei80] was also
added [Hit02].

The notion of formal concept evolved out of the philosophical theory of concepts. Wille
[Wil82] proposed the main ideas which lead to the development of formal concept analysis
as a mathematical field [GW99b]. The underlying philosophical rationale is that a concept is
determined by its extent, i.e. the collection of objects which fall under this concept, and its
intent, i.e. the collection of properties or attributes covered by this concept. Thus, a formal
concept is usually distilled out of an incidence relation between a set of objects and a set of
attributes, see Section 2 for details. The set of all concepts is then a complete lattice under
some natural order, called a concept lattice.

Implicit in the construction of concept lattices from contexts is an implicational theory
of attributes, e.g. the attribute “is a dog” would imply the attribute “is a mammal”, to
give a simple example. Thus, contexts and concepts determine logical structures, which are
investigated e.g. in [GW99a, Gan99, GK99, Wil01]. So formal concept analysis contributes to
data mining research, see e.g. [PT02], and likewise, contexts and concepts can be understood
as natural ways of representing knowledge which bears some kind of hierarchical or logical
structure.

In this paper, we establish a close relationship between the clausal logic on domains due to
Rounds and Zhang [RZ01] and the construction of concepts from contexts, as in formal concept
analysis [GW99b]. We will show how to obtain a domain from a context, and vice-versa, such
that the construction of concepts from a context can be performed via the clausal logic of
Rounds and Zhang. Due to the natural capabilities of contexts and concepts for knowledge
representation, the result shows the potential of using contexts, concepts, and domain logics
for knowledge representation and reasoning.

As such, the paper is part of an ongoing project on the use of domain theory in artificial
intelligence, where domains shall be used for knowledge representation, and domain logic for
reasoning. The contribution of this paper is on the knowledge representation aspect, more
precisely on using domains for representing knowledge which is implicit in formal contexts.
Aspects of reasoning, building on the clausal logic of Rounds and Zhang and its extensions,
as mentioned above, are being pursued and will be presented elsewhere.



We note that on the other hand, our results may make way for the introduction of domain
theory in formal concept analysis, and this issue is also to be taken up elsewhere.

The plan of the paper is as follows. In Section 2 we review the main notions from formal
concept analysis which will be needed in the sequel. In Section 3 we present the clausal logic of
Rounds and Zhang, in a form which will suffice for the main body of our discussion, which we
will restrict to finite contexts. Section 4 establishes the transformation of contexts to domains,
and vice-versa, while Section 5 will be devoted to the proof of the main result of the paper,
Theorem 5.1, relating clausal logic on domains to the constrution of concepts from contexts.
Two illustrating examples in Section 6 will be followed by a brief discussion, in Section 7, of
infinite contexts. Conclusions and discussion of further work will close the paper in Section 8.

Acknowledgements. 1T thank Mike Stange for a primer on Port Royal logic, and Bernhard
Ganter, Matthias Wendt, and Guo-Qiang Zhang for inspiring discussions.

2 Formal Contexts and Concepts

We introduce the notions of formal context and concept as used in formal concept analysis.
We follow the standard reference [GW99b).

A (formal) context is a triple (G, M, I) consisting of two sets G and M and a relation
I C G x M. The elements of G are called the objects and the elements of M are called the
attributes of the context. For ¢ € G and m € M we write gIm for (g,m) € I, and say that
g has the attribute m. A context is called clarified if ¢ = h' implies ¢ = h for all g,h € G,
and correspondingly, m' = n/ implies m = n for all m,n € M. Throughout the paper, we will
assume that all contexts are clarified.

For aset A C G of objects we set A’ = {m € M | gIm for all g € A}, and for a set B C M
of attributes we set B' = {g € G | gIm for all m € B}. A (formal) concept of (G, M,I) is a
pair (A, B) with A C G and B C M, such that A’ = B and B’ = A. We call A the eztent
and B the intent of the concept (A, B). For singleton sets, i.e. B = {b}, we simplify notation
by writing ¢’ instead of {b}'.

The set B(G, M, I) of all concepts of a given context (G, M, ) is a complete lattice with
respect to the order defined by (Aq, By) < (A, By) if and only if A; C A,, which is equivalent
to the condition By C By. B(G, M, I) is called the concept lattice of the context (G, M, I).

2.1 Remark For every set B C M of attributes we have that B’ = B", so that (B’, B")
is a concept. Hence, the concept lattice of a context (G, M, I) can be identified with the set
{B" | B C M}, ordered by superset inclusion.

3 Clausal Logic and Resolution in Domains

We introduce the clausal logic of Rounds and Zhang, together with a corresponding notion of
resolution [RZ01]. We restrict our discussion to the finite case until Section 7.

A partially ordered set is a pair (D,C), where D is a nonempty set and C is a reflexive,
antisymmetric, and transitive relation on D. A bottom element of a partially ordered set
(D,C) is an element L € D such that 1 C d for all d € D. For A C D, let mub A be the



set of all minimal upper bounds of A, and we note that mub() = {1}, if it exists. Dually,
mlb A denotes the set of all maximal lower bounds of A. Two elements ¢,d € D are called
inconsistent, written ¢ ¥ d, if mub{c,d} = (. For a € D, let la ={b€ D |bC a}, and dually
ta ={be€ D |aCb}. For A C D define |A = J,.,(la) and 1A = J,.4(Ta). We call
A a lower set if A =] A, and we call A an upper set if A =1A. For convenience, and with
a slight abuse of standard terminology, we define a poset to be a finite partially ordered set
with bottom element. In the following, let (D, C) be a poset.

The following definitions can be found in [RZ01], but for the fact that we chose to introduce
them for the special case of posets only. For the general case, see the discussion in Section 7.

3.1 Definition A clause is a subset of D. If X is a clause and w € D, we write w | X if
there exists x € X with x C w, i.e. if X contains an element below w. A theory is a set of
clauses, which may be empty. An element w € D is a model of a theory T, written w = T,
if w = X for all X € T or, equivalently, if every clause X € T contains an element below w.
A clause X is called a logical consequence of a theory T, written 7' = X, if w = T implies
w = X. A theory T is closed if T = X implies X € T for all clauses X. It is called consistent
if T £ 0 or, equivalently, if there exists w with w | T.

Definition 3.1 can be understood as a model theory for a clausal logic on posets. We can
also present a corresponding proof theory. For this purpose, we give three rules for deriving
clauses from theories. Let T" be a theory. The weakening rule

X eT,; a€ X; yCa

{yp U (X \{a})

should be read as follows. If X is a clause in T, a € X, and y C a, then we can derive the
clause {y} U (X \ {a}). Similarly, the extension rule

(w)

XeT; yeD
{ypuXx

allows to derive the clause {y} U X from the clause X € T, provided y € D. Finally, the
simplified hyperresolution rule

(ext)

Xl,XQET; ar € X1 as € X,
mub{a;, azx} U (X1 \ {a1}) U (X2 \ {az})

allows to derive the clause mub{a;, a2} U (X3 \ {a1}) U (X2 \ {az2}) from T provided X; and
X, are clauses in T', a; € X4, and a, € X,.

We write T' = X if the clause X can be derived from the theory 7" by a finite number of
applications of the above rules.

(shr)

3.2 Theorem Let T be a theory and X be a clause. Then T' = X if and only if T+ X.

Theorem 3.2 shows that the system consisting of the three rules is sound and complete
with respect to the given model theory. Note that the rules given in [RZ01] differ from those
above. However, equivalence can be shown, which proves Theorem 3.2, and we will do this
later in Section 7 in the more general infinite case.
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4 From Contexts to Domains and Back

We give next the transformation of contexts into posets mentioned in the introduction. A
context (G, M, I) is transformed into a domain with elements G U M as follows.

4.1 Definition Let K = (G, M,I) be a (finite) context. Define the following relation on
D=GUM:

(i) For my, my € M let my < my if and only if m| D mj,.
(ii) For g1,92 € G let g; < g if and only if g] C g5.
(iii) For g € G and m € M let m < g if and only if m € ¢'.
Finally, define the binary relation C on D as the transitive closure of <.

The order relation C in Definition 4.1 follows an intuition which is dominant in domain
theory, namely that an element which is “higher” in the ordering presents an item carrying
“more information” than the item further below. Thus, if g; and g, are objects, we have
g1 T g9 if and only if g5 is “more special” than ¢, i.e. go has more attributes than ¢;.
Similarly, an attribute mso carries “more information” than an attribute mq, if my is “more
special” than my, i.e. if every object with attribute ms also has attribute m;. Also, an object
g carries “more information” than an attribute m if g has the attribute m (and possibly also
others).

In the sequel, we will make the mild but convenient technical assumption that there exists
some m € M with m’ = G. This assures that there is m € M with m C d for all d € D, i.e.
m becomes the bottom element with respect to C. Note that is also ensures that ¢’ # ) for
all g € G.

4.2 Proposition (D,C) is a poset, and M is a lower set in D.

Proof: We have just seen that (D,C) has a bottom element, namely the element m € M
with m’ = G. The bottom element is uniquely determined since the context is assumed to be
clarified. It is clear that C is reflexive and transitive. For antisymmetry assume that there are
a and b in D with a C b and b C a. Then either a,b € M or a,b € G by definition of C. So let
a,b € M. Then o' = V' by (i) of Definition 4.1, so that a = b since the context is clarified. The
case a,b € G is similar. Finally, M is obviously a lower set with respect to < and therefore
also for the transitive closure C. |

Definition 4.1 assigns to every context (G, M, I') a pair consisting of a poset (D, C) together
with a lower set M, where D = G U M and LC is obtained as indicated. We denote the result
of the trainsformation by (D, M,C) or by §(G, M, I). More generally, we use the notation
(D, M,C) to denote a poset D, where M is a lower set in D.

We next give the converse construction of a context from a poset.

4.3 Definition Let (D,C) be a poset and M C D with M = [M. Let G = D\ M and define
the context (G, M, I) by gIm if and only if m C g.
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Figure 1: Counterexample for (b) of Proposition 4.4. (D, C) left, (D, C;) right.

Definition 4.3 assigns a context to every pair consisting of a poset (D, C) and a lower set
M. We denote the resulting context by «(D, M, C).

We remark that Definitions 4.1 and 4.3 are not inverse to each other, as can be seen from
the following Proposition. The reason for this asymmetry will be discussed later, after the
proof of Theorem 5.1.

4.4 Proposition The following hold.
(a) Let (G, M,I) be a context. Then «(§(G, M,I)) = (G, M,]I).

(b) Let (D,C) be a poset and M a lower set such that x(D,M,C) is clarified. Then
d(k(D,M,C)) = (D,M,C;) is a poset and ¢ C d implies ¢ C; d. However, ¢ C; d
does not necessarily imply ¢ C d.

(¢) Under the hypotheses from (b) we have 6(k(6(k(D, M,C)))) = d(x(D, M,C)).

Proof: (a) Let 0(G, M,I) = (D, M;,C) and k(D, M;,C) = (G1, M, I). Then trivially G =
G1, M = M; = My and D = G\ M. Now let g € G and m € M with gI'm. Then m C g by
(iii) of Definition 4.1, and therefore gI;m by Definition 4.3. Conversely, let ¢ € G and m € M
with glym. Then m C g by Definition 4.3, and therefore gI'm by (iii) of Definition 4.1.

(b) Let k(D,M,C) = (G,My,I) and 6(G,M,,I) = (D, M2,Cy), which is a poset by
Proposition 4.2.

Then trivially D = Dy, M = M; = My, and G = D\ M. Now let ¢,d € D with ¢ C d. We
distinguish four cases. (Case 1) If ¢ € M and d € G, then c¢Id by Definition 4.3, and ¢ C; d
by (iii) of Definition 4.1. (Case 2) If ¢,d € M, then ¢ C g for all ¢ € G with d C g. Hence
g € d' implies g € ¢ for all g € G, and by (i) of Definition 4.1 we obtain ¢ C; d. (Case 3) If
¢,d € G, then m C d for all m € M with m C ¢. Hence m € ¢’ implies m € d' for all m € M
and by (ii) of Definition 4.1 we obtain ¢ C; d. (Case 4) The remaining case ¢ € G, d € M is
impossible since M is a lower set.

For the last assertion consider D = {a,b,¢,d,e, L} witha C ¢, a C d, b C d, L the bottom
element, and M = {a,b}. Then a IZ b but a C; b, see Figure 1.

(c¢) k(D,M,C) is a clarified context, thus x(0(k(D, M,C))) = x(D, M,C) by (a), which
immediately yields the assertion. |



Note that dx can be understood as a “closure operator” on posets: It casts a poset
(D, M,C) into one which represents a context. A clarification of (D, M,C) may have to
be performed in this case before it is converted back into a poset.

5 Attribute Logic

We prove the main theorem of this paper, which says that the transformations from Section 4
allow to use the clausal logic of Rounds and Zhang for casting contexts into concepts. Let
(D,C) be a poset and M a lower set. For every {b,...,b,} = B C M define B={be M |

{0}, {0n}} = {0}

5.1 Theorem Let (G, M, I) be a context and §(G, M, I) = (D, M,C). Then for every B C M
we have B = B".

The proof of Theorem 5.1 will be prepared by two lemmas.

5.2 Lemma Let (G, M, I) be a context, 6(G,M,I) = (D, M,C), and B C M. Then

B" = ( N (m)) N M.

a€Emub B

Proof: From Definition 4.1 we obtain m’ =tmNG and ¢’ =]gNM for allm € M and g € G.
By the definitions of extent and intent it follows that

B = (ﬂ(m)) NG = (tmubB)NG

and also that

A= (ﬂ(m)) NM = ({mbA)NM

acA

for all A C GG. We hence obtain

B" = N (a)|nMm

and it remains to show that

(ﬂ (m))er: N ()| N

aEmub B

Let



i.e. b C a for all @ € mub B. Now let a; € (Tmub B) N G be arbitrarily chosen. Then there is
as € mub B with as C a; and hence b C as C ay. Since a; was chosen arbitrarily we obtain
b C a for all @ € (Pmub B) N G, hence

be (] (),

which shows that
( N (w)) C N ()
a€mub B a€(tmub B)NG
and hence
(ﬂ (w))mMg N (a)| N
aEmub B

Conversely, let

be N (o)) nM

a€(tmub B)NG

and let mub B = {my,...,my, G1,...,9m} withm; € M foralli=1,...,n and g; € G for all
j =1,...,m. It remains to show that (1) b C g; for all j = 1,...,m and (2) b C m; for all
t=1,...,n, because this implies

be( N (w)>mM.

a€Emub B

Since b T a for all @ € (TmubB) NG and g; € (TmubB) N G we obtain b T g; for all
j =1,...,m, which shows (1). For (2), let m € {my,...,m,}. By hypothesis we have b C ¢
for all g €etm NG = m'. Since b € M we obtain ' O m' and therefore b C m by (i) of
Definition 4.1. [

5.3 Lemma Let D be a poset, let a,aq,...,a, € D and note the convention ()(]b) = D.
bed
Then the following hold.

(a) {{a1,....an}} = {a} if and only if a € iﬁ(wi).
(b) {{a1},...,{an}} F {a} if and only if a € N (4b).

bemub{ai,...,an}
Proof: For the proof, we repeatedly apply Theorem 3.2.
n
(a) Let @ € () (da;). Then a C a; and we obtain {{ay,...,a,}} F {a,as,...,a,} using
i=1

the weakening rule. By applying the same rule again to {{a,as,...,a,}} with a C ay we
have {{ai,...,a,}} F {a,a,a5...,a,} = {a,a;3...,a,}, and by repeated application of the
weakening rule we eventually obtain {{ay,...,a,}} F {a}.
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Conversely, let a be such that {{ay,...,a,}} |E {a}. Since we derive {a} from the theory
{{ai,...,a,}} consisting of a single clause, the derivation must be possible using only the
weakening and the extension rule. Now assume a ¢ |a; for some k € {1,... ,n}. Then it is an
easy proof by induction that every clause derived from {ay,...,a,} must contain either a; or

some b with b C ay. Since a [Z ay, it is impossible to derive the clause {a}.
m

(b) Let mub{ai,...,a,} = {b1,...,bn}. If a € N (L o) = N b),

bemub{ai,...,an} =1
then {{b1,...,bn}} E {a} by (a). An easy induction argument using (shr) shows that

{{ai}, ..., {an}} F{b1,...,bn}, so we obtain {{a1},...,{a,}} = {a}.

Conversely, assume {{a},...,{a,}} E {a}. Then for every w € D with w [

{a1},...,w E {a,} we have w E {a}, i.e. whenever a;,...,a, C w then a C w. So let
b € mub{ay,...,a,}. Then ay, ..., a, C b, and hence a C b. Since b € mub{ay,...,a,} can be
chosen arbitrarily, we obtain a € N (lb) as desired. |

We can now prove Theorem 5.1.

Proof of Theorem 5.1 Let B = {by,...,b,} and let b € B, i.e. {{by,...,b,}} = {b} and

b€ M. Then by Lemma 5.3 (b) we have b€ () (la), and since also b € M we can apply
acmub B
Lemma 5.2 to obtain b € B".

Conversely, let b € B"”. Then b € () (Ja) N M by Lemma 5.2, hence b € M and

a€Emub B

be [\ (la), which implies {{b;},...,{b,}} | {b} by Lemma 5.3. So b € B as desired. B
aEmub B
5.4 Corollary ({E | B C M} , Q) is isomorphic to the concept lattice of (G, M, I).

Proof: By Theorem 5.1, we have B = B”, and the assertion follows from Remark 2.1. [
We return to the remark made earlier in the paragraph preceding Proposition 4.4.

5.5 Remark It does not suffice to replace Definition 4.1 by the simpler definition
for g € G and m € M let m C g if and only if m € ¢/,

omitting parts (i) and (ii) of Definition 4.1, even if, additionally, a bottom element is added
to the resulting order C to make it a poset. Indeed, Theorem 5.1 does no longer hold in this
case: Consider again the poset on the left hand side of Figure 1, which can be understood to
represent the context ({c,d, e}, {a, b}, {(c,a),(d,a),(d,b))}), after a bottom element is added.
We obtain a ¢ {b} = {b, L} although a € 0" = {a, b}.

6 Examples

We discuss two examples to display our results. The first one is taken from [GW99b, Section
2.2]. Seven triangles are classified according to some properties, as in Table 1. We have added
an attribute t to satisfy our technical condition on contexts. The corresponding poset and
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Triangle a b ¢ d e f g ¢t
1: (0,0),(6,0),(3,1) X X X X
2: (0,0),(1,0),(0,1) X X X X
3: (0,0),(4,0),(1,2) X X X X
4: (0,0),(2,0), (1,4/3) | x X X X X
5: (0,0),(2,0),(5,1) X X X X
6: (0,0),(2,0),(1,3) | x x x X X
7: (0,0),(2,0),(0,1) X X X

Table 1: A context for triangles. a: equilateral, b: not equilateral, c: isosceles, d: oblique, e:
acute, f: obtues, g: right, t: triangle. The pairs in the first column are coordinates of the
vertices of the triangles.

Figure 2: Poset and concept lattice (the latter reversely ordered) for the triangles context.
The black dots are elements, while the circles stand for intersections of lines, e.g. on the left
hand side we have b C f and b C 3.
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concept lattice are depicted in Figure 2, where the order in the concept lattice is reverse to
the usual one.

The labels in Figure 2 are determined as follows. A concept is labelled with an object ¢
if this concept is the least concept (in the usual ordering on concepts) which contains g. A
concept is labelled with an attribute m if this concept is the greatest concept (in the usual
ordering on concepts) which contains m. We note the similarity between the two pictures in
Figure 2, which is not coincidental, as the following theorem shows.

6.1 Theorem Let (G, M, I) be a clarified context, let 6(G, M, I) = (D, M,C), and let (C, <)
be the concept lattice of (G, M, I). We define a mapping f : D — C as follows. For m € M
let f(m) be the greatest element (A, B) € C such that m € B. For g € G let f(g) be the
least element (A, B) € C such that g € A. Then f is an order-homomorphism from (D, C) to
(€,>).

Proof: First note that by [GW99b, Proposition 24], and its dual, the mapping f is well-
defined.

We show that f is an order-homomorphism, i.e. for all ¢,d € D with ¢ C d we have
f(e) > f(d). Let my,me € M and ¢1,92 € G. If m; T my, then m, C m/. Since my is
contained in f(msy), we obtain that for all g in f(msy) we have g € m], and therefore m;
must also be contained in f(ms). By definition, f(my) is the greatest concept containing my,
hence f(my) > f(ms). If g C go, then ¢f C gb. Since g is contained in f(g;), we obtain
that for all m in f(g;) we have m € g}, and therefore go must also be contained in f(g;). By
definition, f(gs) is the least concept containing go, hence f(g1) > f(g2). Finally, let m; C ¢;.
Then m; € g}, so the concept (g7, g;) contains both g; and m;. But f(m;) is the greatest
concept containing my, so f(mq) > (g, 7). Also, f(g1) is the least concept containing g;, so

(91, 91) > f(g91), and we obtain f(mi) > f(g1). u

By the triangle example, we see that in general f is not injective. We also note that in the
same example the intent B” of any set of attributes B is obtained as the set |B with respect
to the poset. This, however, is not the case in general, as the next example shows.

Consider the context in Table 2 which classifies animals according to some attributes.
The corresponding poset is depicted in Figure 3, and we note that, for example, {b,m}" =
{b,m,l,a} # {b,m,a} =1{b,m}. As the reader will easily verify, the concept lattice of the
animal context is isomorphic to its poset, reversely ordered and with a bottom element added,
and the labels in Figure 3, in this case, are the respective images of the mapping f from
Theorem 6.1.

7 The Infinite Case

We shortly discuss infinite contexts and partially ordered sets, and deliver the missing proof
of Theorem 3.2.

A complete partial order, cpo for short, is a partially ordered set (D,C) with a least
element, |, called the bottom element of (D,C), and such that every directed set in D has
a least upper bound, or supremum, | | D. An element ¢ € D is said to be compact or finite if
whenever ¢ C | | L with L directed, then there exists e € L with ¢ C e. The set of all compact

11



b m f 1 a
S | X X X
d X X X
W | X X X X
t X X X

Table 2: A context for animals. s: some dinosour, d: dog, w: whale, t: toad, b: is big, m: is a
mammal, f: has feet, I: lives in water, a: is an animal

S d w t
b m f |
a

Figure 3: Poset for the animal context.

elements of a cpo D is written as K(D). An algebraic cpo is a cpo such that every e € D is the
directed supremum of all compact elements below it. A coherent algebraic cpo is an algebraic
cpo such that every finite set of compact elements has a finite set of minimal upper bounds.

Note that in a poset all elements are compact, and that every poset is trivially a coherent
algebraic domain. We next carry over the definitions from Section 3 from posets to domains.
The reader will easily verify that the new terminology is consistent with the old one.

Define a clause in a domain D to be a finite subset of K(D). The rest of Definition 3.1
remains unchanged. Likewise, the weakening rule and the simplified resolution rule need not
be modified. The extension rule becomes

X eT,; y € K(D)
{yjux
with the sole modification that y is required to be compact.

In [RZ01], Rounds and Zhang give the following two rules, called the binary hyperresolution
rule and the special rule'.

(ext)

X, XoeT, ar € X1 ay € Xy mub{ai,as} EY
YU (Xi\{ar}) U (X2 \{az})
0eT; Y a clause
Y

(bhr)

(spec)

!They also give a third rule which can be disregarded for our discussion.
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Due to [RZ01], the system consisting of the binary hyperresolution rule and the special
rule is sound and complete with respect to the model theory introduced in Definition 3.1. We
will use this result for proving Theorem 3.2.

Proof of Theorem 3.2 For soundness, consider the weakening rule. Then mub{a} = {a}
{y} and therefore, by the binary hyperresolution rule, the weakening rule is sound. Now
consider the extension rule. If X = (), then the rule is sound by the special rule. If X # (),
then let @ € X and note that mub{a} = {a} E {a,y} for all y € K(D), so again by
the binary hyperresolution rule, the extension rule is sound. Finally, consider the simplified
hyperresolution rule and note that trivially mub{a;, a2} E mub{a;, as}, so that by the binary
hyperresolution rule, the simplified hyperresolution rule is sound.

For completeness, we note that the special rule can easily be derived from the extension
rule. So it suffices to derive the binary hyperresolution rule from (shr), (ext) and (w). Let
X, Xy be given with ay € Xy, as € Xs, and aq Tas. Furthermore, let Y be a clause with
mub{ai,as} E Y and let mub{a;,as} = {b1,...,b,}. Then for every b; there exists y; € YV’
with y; T b;. From X; and X5, using the simplified hyperresolution rule, we can derive
X3 = mub{ay, a2} U (X1 \ {a1}) U (X2 )\ {a2}), and by repeated application of the weakening
rule and the extension rule we obtain Xy = {y1,...,y,} U (Xy \ {a1}) U (X2 \ {az}). Finally,
using the extension rule repeatedly, we can add to X, all remaining elements from Y. For
a1y as we have mub{a;, a2} = () and we derive (X \ {a1}) U (X2 \ {az2}) using the simplified
hyperresolution rule. Now the extension rule can be applied repeatedly in order to obtain
Y U (X \{a1}) U (X2 )\ {az}). This completes the proof. |

As to the problem of carrying over Theorem 5.1 to the infinite case, we note that not every
context which is cast into a partially ordered set using Definition 4.1 results in a coherent
algebraic domain, as the following example shows.

7.1 Example Let G = {g,h,91,92,93,...} and M = {m,n,my,my, mg,...}. Define I C
GxMasl= {(ga m)a (ha n)a (gw m)a (gw n)a (gza mz) | S N}7 and let (D, E) be as in Definition
4.1. Then mub{g,h} = {g1, g2, 93,...} is infinite. So (D,C) cannot be a coherent algebraic
domain.

Example 7.1 shows that the results in this paper can not carry over to infinite contexts and
domains in full generality without modifications. Further investigations are needed in order
to understand the infinite case. This is ongoing work of the author and will be presented
elsewhere. However, we note that the following theorem holds. Call a context which results
in a coherent algebraic domain a finitary context.

7.2 Theorem Let (G, M, ) be a finitary context. Then Theorem 5.1 carries over analogously
to this case.

Proof: It is easily verified that the proof of Theorem 5.1 carries over with only minor modi-
fications. u
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8 Conclusions and Further Work

We have established results which lay the foundations for a cross-transfer between formal
concept analysis and domain logic. Apart from the obvious task of extending Theorem 5.1
to the infinite case, we see two major lines of research emerging from the investigations. The
first focuses on applications in formal concept analysis and data mining. How can tools and
results from domain theory and domain logics be employed? The second concerns the project
mentioned in the introduction, with the aim of using domains for knowledge representation
and domain logics for reasoning. Theorem 5.1 establishes a first step towards understanding
domains in a concept analysis and data mining framework, thus contributing substantially
to the question how domains represent knowledge. It also makes it possible to understand
the clausal logic of Rounds and Zhang, and its extensions mentioned in the introduction, as
a reasoning framework which acts directly on contexts. Understanding the impact of these
observations constitutes a considerable body of work, and is under investigation by the author.
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