
Conjunctive Queries for a
Tractable Fragment of OWL 1.1 ⋆

Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler

Institut AIFB, Universität Karlsruhe, Germany

Abstract. Despite the success of the Web Ontology Language OWL, the de-
velopment of expressive means for querying OWL knowledge bases is still an
open issue. In this paper, we investigate how a very natural and desirable form
of queries—namely conjunctive ones—can be used in conjunction with OWL
such that one of the major design criteria of the latter—namely decidability—can
be retained. More precisely, we show that querying the tractable fragmentEL++

of OWL 1.1 is decidable. We also provide a complexity analysis and show that
querying unrestrictedEL++ is undecidable.

1 Introduction

Conjunctive queries originated from research in relational databases [1], and, more re-
cently, have also been identified as a desirable form of querying expressive description
logics (DLs) that are underlying OWL [2–6]. At the same time,tractable fragments of
OWL are receiving increasing attention as they promise to provide a favourable balance
between expressivity and scalability. Such fragments have, in particular, been identified
as part of the OWL 1.1 proposal,1 and this raises the question how conjunctive queries
can be combined favourably with the underlying descriptionlogics.

In this paper, we thus present the very first algorithm for answering conjunctive
queries in the tractableEL++-fragment ofSROIQ [7, 8], and thus of OWL 1.1. The
algorithm is based on an automata-theoretic formulation ofcomplex role inclusion ax-
ioms that was also found useful in reasoning withSROIQ [9, 10].

Our algorithm in particular allows us to derive a number of complexity results re-
lated to conjunctive query answering inEL++. We first show that conjunctive queries
in EL++ are undecidable in general, and identify theEL++-fragment ofSROIQ as
an appropriate decidable sub-DL. Under some related restrictions of role inclusion ax-
ioms, we show that conjunctive query answering in general isPS-complete. Query
answering for fixed knowledge bases (query complexity) is shown to be NP-complete,
whereas for fixed queries (schema complexity) it is merely P-complete.

2 Preliminaries

We assume the reader to be familiar with the basic notions of description logics (DLs).
The DLs that we will encounter in this paper areEL++ [7] and, marginally,SROIQ
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1 Seehttp://webont.org/owl/1.1/ for both.



[10]. A DL signatureconsists of a finite set ofrole namesR, a finite set ofindividual
namesI , and a finite set ofconcept namesC. We will use this notation throughout the
paper.EL++ supportsnominals, which we conveniently represent as follows: for any
a ∈ I , there is a concept{a} ∈ C such that{a}I = {aI} (for any interpretationI).
As shown in [7], anyEL++ knowledge base is equivalent to one innormal form, only
containing the following axioms:

TBox: A ⊑ C A⊓ B ⊑ C A ⊑ ∃R.C ∃R.A ⊑ C
RBox: R ⊑ T R◦ S ⊑ T

whereA, B ∈ C ∪ {⊤}, C ∈ C ∪ {⊥}, andR, S, T ∈ R. Note that ABox statements of
the formsC(a) andR(a, b) are internalised into the TBox. The standard model theoretic
semantics ofEL++ can be found in [7]. Unless otherwise specified, the lettersC, D, E
in the remainder of this work always denote (arbitrary) concept names, and the letters
R, S denote (arbitrary) role names. We do not consider concrete domains in this paper,
but are confident that our results can be extended accordingly.

For conjunctive queries, we largely adopt the notation of [6] but directly allow for
individuals in queries. LetV be a countable set ofvariable names. Given elementsx,
y ∈ V ∪ I , a concept atom(role atom) is an expressionC(x) with C ∈ C (R(x, y) with
R ∈ R). A conjunctive query qis a set of concept and role atoms, read as a conjunction
of its elements. ByVar(q) we denote the set of variables occurring inq. Consider an
interpretationI with domain∆I, and a functionπ : Var(q)∪I → ∆I such thatπ(a) = aI

for all a ∈ I . We define

I, π |= C(x) if π(x) ∈ CI, and I, π |= R(x, y) if (π(x), π(y)) ∈ RI.

If there is someπ such thatI, π |= A for all atomsA ∈ q, we writeI |= q and say that
I entails q. We say thatq is entailed by a knowledge baseKB, denotedKB |= q, if all
models ofKB entailq.

We conclude this section with an important result on conjunctive queries inEL++.

Theorem 1. For an EL++ knowledge base KB and a conjunctive query q, the entail-
ment problem KB|= q is undecidable. Likewise, checking class subsumptions inEL++

extended with inverse roles or role conjunctions is undecidable, even if those operators
occur only in the concepts whose subsumption is checked.

Intuitively, the result holds since RBoxes can encode context-free languages, the inter-
section of which can then be checked with conjunctive queries/inverse roles/role con-
junctions. This problem is undecidable (see [11] for a proof). Clearly, arbitrary role
compositions are too expressive when aiming for a decidable(or even tractable) logic
that admits conjunctive queries. We thus restrict our attention to the fragment ofEL++

that is in the (decidable) description logicSROIQ [10], and investigate its complexity
with respect to conjunctive query answering.

Definition 1. AnEL++ RBox in normal form isregularif there is a strict partial order
≺ onR such that, for all role inclusion axioms R1 ⊑ S and R1 ◦R2 ⊑ S , we find Ri ≺ S
or Ri = S (i= 1, 2). AnEL++ knowledge base is regular if it has a regular RBox.

The existence of≺ ensures that the role hierarchy does not contain cyclic dependen-
cies other than through direct recursion of a single role.



Table 1. Closure rules for an interpretationI w.r.t. some knowledge baseKB. In general, we
assume thatC,D ∈ C ∪ {⊤,⊥} andR1,R2,S ∈ R.

(1)
δ ∈ CI KB |= C ⊑ D

DI ≔ DI ∪ {δ}

(2)
δ ∈ CI KB |= C ⊑ ∃R.D KB 6|= D ⊑ {a} for anya ∈ I
∆I ≔ ∆I ∪ {ǫ} RI ≔ RI ∪ {(δ, ǫ)} DI ≔ DI ∪ {ǫ}

whereǫ = ǫδ,C⊑∃R.D

(3)
δ ∈ CI KB |= C ⊑ ∃R.D KB |= D ⊑ {a} for somea ∈ I

RI ≔ RI ∪ {(δ,a)}

(4)
(δ, ǫ) ∈ RI R⊑ S ∈ KB

SI ≔ SI ∪ {(δ, ǫ)}
(5)

(δ, ǫ) ∈ RI1 (ǫ, γ) ∈ RI2 R1 ◦R2 ⊑ S ∈ KB

SI ≔ SI ∪ {(δ, γ)}

3 Canonical models and reasoning automata forEL++

EL++, like all Horn-DLs, allows for the construction ofcanonicalor universalmodels.
By this we mean an interpretation that is in a sense most general among the models
of a givenEL++ knowledge base, satisfying exactly those formulae that arelogical
consequences of the knowledge base. This notion could be formalised further (using the
concept of(bi)simulationbetween models), but we merely require canonical models to
guide us in the development and verification of a query answering algorithm, and hence
we will confine ourselves to directly showing the relevant properties.

Consider a regular consistentEL++ knowledge baseKB. Here and in the following,
we assume w.l.o.g. thatKB does not entaila ≈ b (i.e. {a} ≡ {b}) for anya, b ∈ I . Indeed,
one can just replace all occurrences ofb with a in this case, both withinKB and within
any query we wish to consider later on (and this case can be detected in polynomial
time). Moreover, we assume that there is at least one individual in the language, i.e.
I , ∅. We now provide an iterative construction of a modelI of KB. Our goal is to
obtain a concise definition of a suitable canonical model, soit is no matter of concern
that the given construction does not terminate after finitely many steps.

To simplify our arguments, we adopt a naming scheme for potential elements of the
domain ofI. Let ∆ be the smallest set such thatI ⊆ ∆ and, for anyδ ∈ ∆, C, D ∈ C,
andR∈ R, we find thatǫδ,C⊑∃R.D ∈ ∆. We will defineI such that∆I ⊆ ∆.

For any two interpretationsJ1 andJ2 of KB, we say thatJ1 is smaller than (or
equal to)J2 if, for any F ∈ C ∪R ∪ {⊤}, FJ1 ⊆ FJ2. The interpretationI is defined to
be the smallest interpretation such that∆I ⊆ ∆, {a}I ≔ a for all a ∈ I , andI is closed
under the rules of Table 1. It is easy to see that this smallestinterpretation exists.

The rules of Table 1 have the special property that each individual is “initialised”
with at most one concept name. Formally, we define for each elementδ ∈ ∆I a concept
nameι(δ) as follows:

– if δ ∈ I , ι(δ) ≔ {δ},
– if δ = ǫδ′ ,C⊑∃R.D for someδ′ ∈ ∆I, C, D ∈ C, R ∈ R, thenι(δ) ≔ D.

Note that the above cases are indeed exhaustive and mutuallyexclusive.



Lemma 1. The interpretationI as constructed above is a model of KB.

Proof. First note that the domain ofI is non-empty since we assume the existence of
at least one individual. We have to check that all axioms ofKB are indeed satisfied. For
axioms of the formC ⊑ ∃R.D this is obvious by rules (2) and (3) of Table 1. Similarly,
all role inclusion axioms are directly accounted for by rules (4) and (5).

So it remains to show that axiomsΦ of the formsC ⊑ D, ∃R.C ⊑ D, andC1⊓C2 ⊑

D are satisfied. Obviously, wheneverδ ∈ CI (δ ∈ ∃R.CI) for someC ∈ C (andR ∈ R),
we findKB |= ι(δ) ⊑ C (KB |= ι(δ) ⊑ ∃R.C). We conclude that, whenever the premise of
some axiomΦ as above is satisfied forδ, then it is entailed byι(δ), and so its conclusion
D is a direct consequence ofι(δ) underKB. ThusΦ is satisfied by rule (1). ⊓⊔

We are most interested in the specific structure of the canonical model. Its construc-
tion attempts to preserve a form of tree-likeness, broken only by the potential occur-
rence of nominals. Formally, this is expressed through the following property.

Property 1. For any elementδ ∈ ∆I that is not an individual (δ < I ), there is a unique
chain of elementsδ0 . . . δk = δ and role namesR0, . . . , Rk−1 ∈ R, such thatδ0 ∈ I and,
for all i = 1, . . . , k, δi ∈ ∆I is of the formδǫ,C⊑R.D with ǫ = δi−1 andR = Ri−1. This
is easily verified by observing that anyδ of the given form must have been entailed by
rule (2), and by applying a simple induction on the depth of this entailment. In this case,
we say thatδi generatesδ via the rolesRi . . .Rk (i = 0, . . . , k).

The canonicity of the modelImanifests itself in the fact that structures in the model
are necessary logical consequences of given axioms.

Property 2. Consider elementsδ, ǫ ∈ ∆I such thatδ generatesǫ via the rolesR0 . . .Rk.
Thenι(δ) ⊑ ∃R0.(. . .∃Rk.ι(ǫ) . . .) is a consequence ofKB. This is obvious by another
simple inductive argument that utilises the preconditionsof the applications of rule (3).

Property 3. For any (δ, ǫ) ∈ RI, there is a chain of elementsδ = δ0 . . . δk = ǫ and role
namesRi (i = 0, . . . , k− 1), such that

– (δi , δi+1) ∈ RIi is directly entailed by one of rules (2) and (3), and
– R0 ◦ . . . ◦Rk−1 ⊑ R is a consequence ofKB.

We show this by an inductive argument as follows: for the basecase, assume that
(δ, ǫ) ∈ RI follows from rule (2) or (3). Then the above condition clearly holds. For the
induction step, assume that (δ, ǫ) ∈ RI follows by applying rule (5) toR1 ◦ R2 ⊑ R, and
that the claim holds for the statements (δ, δ j) ∈ RI1 and (δ j, ǫ) ∈ RI2 . We easily can con-
struct from these assumptions a suitable chain of elements from the chains postulated
for R1 andR2. Similarly, the second condition of the claim follows from the assumption
thatR1 ◦R2 ⊑ R and the induction hypothesis. Rule (4) is treated analogously.

In the remainder of this section, we investigate various means of presenting logical
inferences by means of automata. These encodings will play amajor role within our
subsequent query answering algorithm. We describe nondeterministic finite automata
(NFA)A as tuples (QA, ΣA, δA, iA, FA), whereQA is a finite set of states,ΣA is a finite
alphabet,δA : QA × QA → 2ΣA is a transition function that maps pairs of states to sets
of alphabet symbols,2 iA is the initial state, andFA is a set of final states.

2 A possibly more common definition is to map pairs of states andsymbols to sets of states, but
the above is more convenient for our purposes.



Table 2.Completion rules for constructing an NFA from anEL++ knowledge baseKB.

(CR1) If C′ ∈ δ(C,C), C′ ⊑ D ∈ KB, andD < δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ {D}.
(CR2) If C1,C2 ∈ δ(C,C), C1 ⊓C2 ⊑ D ∈ KB, andD < δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ {D}.
(CR3) If C′ ∈ δ(C,C), C′ ⊑ ∃R.D ∈ KB, andR < δ(C,D) thenδ(C,D) ≔ δ(C,D) ∪ {R}.
(CR4) If R ∈ δ(C,D), D′ ∈ δ(D,D), ∃R.D′ ⊑ E ∈ KB, and E < δ(C,C) then δ(C,C) ≔

δ(C,C) ∪ {E}.
(CR5) If R ∈ δ(C,D), ⊥ ∈ δ(D,D), and⊥ < δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ {⊥}.
(CR6) If {a} ∈ δ(C,C) ∩ δ(D,D), and there are statesC1, . . . ,Cn such that

– C1 ∈ {C,⊤,A} ∪ {{b} | b ∈ I },
– δ(C j ,C j+1) , ∅ for all j = 1, . . . ,n− 1,
– Cn = D,

andδ(D,D) * δ(C,C) thenδ(C,C) ≔ δ(C,C) ∪ δ(D,D).
(CR7) If R ∈ δ(C,D), R⊑ S, andS < δ(C,D) thenδ(C,D) ≔ δ(C,D) ∪ {S}.
(CR8) If R1 ∈ δ(C,D), R2 ∈ δ(D,E), R1 ◦R2 ⊑ S, andS < δ(C,E) thenδ(C,E) ≔ δ(C,E) ∪ {S}.

Proposition 1. Given a regularEL++ RBox, and some role R∈ R, there is an NFA
A(R) over the alphabetR which accepts a word R1 . . .Rn iff R1 ◦ . . . ◦ Rn ⊑ R is a
consequence of everyEL++ knowledge base with the given RBox.

One possible construction for the required automaton is discussed in [10]. Intu-
itively, the RBox can be understood as a grammar for a regularlanguage, for which an
automaton can be constructed in a canonical way. The required construction ofA(R)
might be exponential for some RBoxes. In [9], restrictions have been discussed that pre-
vent this blow-up, leading to NFA of only polynomial size w.r.t. the RBox. Accordingly,
an RBox issimplewhenever, for all axioms of the formR1 ◦ S ⊑ S, S ◦ R2 ⊑ S, the
RBox does not contain a common subroleRof R1 andR2 for which there is an axiom of
the formR◦S′ ⊑ R′ or S′ ◦R⊑ R′. We will usually consider only such simple RBoxes
whenever the size of the constructed automata matters.

Next we describe the construction of a novel kind of automaton that encodes cer-
tain concept subsumptions entailed by anEL++ knowledge base. The automaton itself
is closely related to the reasoning algorithm given in [7], but the representation of en-
tailments via nondeterministic finite automata (NFA) will be essential for the query
answering algorithm in the following section.

Consider anEL++ knowledge baseKB. Given a concept nameA ∈ C, we construct
an NFAAKB(A) = (Q, Σ, δ, i, F) that computes superconcepts ofA, where we omit the
subscript ifKB is clear from the context. SetQ = F = C∪{⊤}, Σ = C∪R∪{⊤,⊥}, and
i = A. The transition functionδ is initially defined asδ(C,C) ≔ {C,⊤} (for all C ∈ Q)
andδ(C,D) ≔ ∅ (for all C,D ∈ Q with C , D), and extended iteratively by applying
the rules in Table 2. The rules correspond to completion rules in [7, Table 2], though the
conditions for (CR6) are slightly relaxed, fixing a minor glitch in the original algorithm.

It is easy to see that the rules of Table 2 can be applied at mosta polynomial number
of times. The words accepted byA(A) are strings of concept and role names. For each
such wordw we inductively define a concept expressionCw as follows:

– if w is empty, thenCw = ⊤,



– if w = Rvfor someR ∈ R and wordv, thenCw = ∃R.(Cv),
– if w = Cv for someC ∈ C and wordv, thenCw = C ⊓Cv.

For instance, the wordCRDEStranslates intoCCRDES = C⊓∃R.(D⊓E⊓∃S.⊤). Based
on the close correspondence of the above rules to the derivation rules in [7], we can
now establish the main correctness result for the automatonA(A).

Theorem 2. Consider a knowledge base KB, concept A, and NFAA(A) as above, and
let w be some word over the associated alphabet. Then KB|= A ⊑ Cw iff one of the
following holds:

– A(A) accepts the word w, or
– there is a transition⊥ ∈ δ(C,C) where C = ⊤, C = A, or C = {a} for some

individual a.

In particular,A(A) can be used to check all subsumptions between A and some atomic
concept B.

The second item of the theorem addresses the cases whereA is inferred to be empty
(i.e. inconsistent) or where the whole knowledge base is inconsistent, from which the
subsumption trivially follows. While the above yields an alternative formulation of the
EL++ reasoning algorithm presented in [7], it has the advantage that it also encodes
all pathswithin the inferred models. This will be essential for our results in the next
section. The following definition will be most convenient for this purpose.

Definition 2. Consider a knowledge base KB, concepts A, B∈ C, and the NFAA(A) =
(Q, Σ, δ, i, F). The automatonAKB(A, B) (or justA(A, B)) is defined as(Q,R, δ′, i, F′)
where F′ = ∅ if ⊥ ∈ δ(A,A) and F′ = {B} otherwise, andδ′ is the restriction ofδ to R.

The automatonA(A, B) normally accepts all words of rolesR1, . . . ,Rn such that
A ⊑ ∃R1(. . .∃Rn.B . . .) is a consequence ofKB, with the border case wheren = 0 and
KB |= A ⊑ B. Moreover, the language accepted by the NFA is empty whenever A ⊑ ⊥
has been inferred.

4 Deciding Conjunctive Queries forEL

In this section, we present a nondeterministic algorithm that decides the entailment of
a queryq with respect to some regular consistent knowledge baseKB. The algorithm
constructs a so-calledproof graphwhich establishes, for all interpretationsI of KB, the
existence of a suitable functionπ that shows query entailment. Intuitively, a proof graph
encodes a fragment of the canonical modelI of Section 3.

Formally, a proof graph is a tuple (N, L,E) consisting of a set of nodesN, a labelling
functionL : N → C ∪ {⊤}, and apartial transition functionE : N × N → A, whereA
is the set of all NFA over the alphabetC ∪ {⊤,⊥} ∪ R. A nodem ∈ N is reachableif
there is some noden ∈ N such thatE(n,m) is defined, andunreachableotherwise. The
nodes of the proof graph are abstract representations of elements in the domain of the
canonical modelI of KB. The labels assign a concept to each node, the intuition being



Table 3.A nondeterministic algorithm for deciding conjunctive queries inEL++.

A. Query 1 Select a (possibly empty) setX ⊆ Var(q)
factorisation 2 For eachx ∈ X

3 Select somee ∈ Var(q) ∪ I and replace all occurrences ofx in q with e
B. Initialise proof 4 N ≔ I ∪ Var(q), let E be undefined for all arguments

graph (N, L,E) 5 For eacha ∈ I , L(a) ≔ {a}
6 For eachx ∈ Var(q), selectL(x) ∈ C ∪ {⊤}
7 For eachn ∈ N, a ∈ I , E(n, a) ≔ A(L(n), L(a))
8 While there is an unreachable node
9 Select some unreachablex ∈ Var(q), select some reachablen ∈ N

10 E(n, x) ≔ A(L(n), L(x))
C. Check proof 11 For eachn ∈ N, m ∈ Var(q)

graph 12 If E(n,m) is defined and accepts no word, terminate with failure
D. Check concept13 For each concept atomC(n) ∈ q

entailment 14 If not KB |= L(n) ⊑ C, terminate with failure
E. Split role 15 For each role atomR(n,m) ∈ q

automata 16 Compute shortest pathn = n0, . . . ,nk = m from n to m
17 SplitA(R) into k automataA(R(n,m),n0,n1), . . . ,A(R(n,m),nk−1,nk)
18 For eachA(R(n,m),ni−1, ni)
19 IfA(R(n,m),ni−1,ni) accepts no word, terminate with failure

F. Check role 20 acc≔ true
entailment 21 For eachn, m ∈ N with E(n,m) defined

22 If m ∈ I
23 For each split automatonA(F, n,m)
24 IfA(F, n,m) andE(n,m) do not accept a common word
25 acc≔ false
26 Else ifm ∈ Var(q)
27 If no word is accepted byE(n,m) and all split automataA(F, n,m)
28 acc≔ false
29 If acc is false, then terminate with failure
30 Else accept the query

that this is the “main concept”ι(δ) defined in Section 3. Finally, the transition function
encodes role paths in the canonical model, which provide thebasis for inferencing about
relationships between elements. It would be possible to adopt a more concrete repre-
sentation for role paths (e.g. by guessing a single path), but our formulation reduces
nondeterminism and eventually simplifies our investigation of algorithmic complexity.

Our algorithm for deciding conjunctive query entailment isgiven in Table 3. Any
occurrence of the word “select” in the description indicates a nondeterministic choice
of the algorithm. Step A is a standard preprocessing step formany query answering
algorithms. Step B initiates the proof graph and ensures that all nodes are reachable.
Variable nodes eventually are reachable through exactly one predecessor node, so the
structure of the proof graph resembles the canonical model (compare Property 1 of
Section 3). Steps C and D verify that the selected proof graphindeed establishes the
existence of the required anonymous elements in the model (C) and the entailment of
the query’s concept atoms (D). At this stage, the proof graphstill represents many pos-



sible fragments of the canonical model: the edge NFA that connect to variable nodes
encode possible generating role paths (in the sense of Property 1 Section 3), each of
which leads to a different element in the canonical model. The edges leading to in-
dividual nodes have a slightly different meaning: all of the paths they represent must
actually exist in any model. Summing up, the proof graph still represents many possible
matches between the query and a model ofKB, though a number of basic decisions on
the structure of the considered matches has already been made and it is known that any
such match suffices to entail the concept atoms of the query.

Now Step E computes the RBox automataA(R) of Section 3 and applies a non-
deterministicsplitting operation, which we define next. We remark that the required
“shortest path” exists and is easily found in polynomial time (see [11]).

Definition 3. Consider an NFAA = (Q, Σ, δ, i, { f }). A split ofA into k parts is given
by NFAA1, . . . ,Ak withA j of the form(Q, Σ, δ, q j−1, {q j}) such that q0 = i, qk = f , and
q j ∈ Q for all j = 1, . . . , k− 1.

It is easy to see that, if each split automatonA j accepts some wordw j , we find that
w1 . . .wk is accepted byA. Likewise, any word accepted byA is also accepted in this
sense by some split ofA. Since the combination of any split in general accepts less
words thanA, splitting an NFA usually involves some don’t-know nondeterminism.

The intuition underlying this split is that each role NFAA(R) encodes possible
chains of roles that suffice to establish roleR. Clearly, one such chain must be found
for every query atomR(n,m). But the proof graph already imposes a basic structure
that defines how elementsn andm can be connected, and any match withR must be
distributed along the paths of the proof graph. This is implemented by the above split.

Finally, Step F again verifies the earlier choices of the algorithm by comparing the
(logically deducible) role chains given by the edge NFA withthe role chains that the
split NFA require to exist for establishing a match. The casedistinction reflects the
different intention of edges leading to individual or variable nodes. For edges leading
to a variable node, only a single generating role path existsin the canonical model, and
all split automata must match one such path (line 27). For edges leading to nominal
nodes, all of accepted paths exist in every model. Hence line24 implements pairwise
comparisons of each split NFA with the edge NFA. Concrete implementations for the
checks of lines 24 and 27 are discussed in Section 6.

We conclude this section with a small example. LetKB be the knowledge base
consisting of the following axioms:

A ⊑ ∃R.B B⊑ ∃S.{a} T ◦ R⊑ T {a} ⊑ ∃T.{b} {b} ⊑ A

with concept namesA andB, role namesR, S andT, and individualsa, b. Consider the
query{S(x, y),T(y, x)}.

In Step A, the algorithm replacesy by a to obtain the query{S(x, a),T(a, x)}. The
proof graph built in Step B has nodesN = {a, b, x} with L(a) = {a}, L(b) = {b} and
L(x) = B. Edges are constructed between pairs of elements (a, b), (b, a), (x, a), (x, b),
and (b, x) (i.e. b generatesx). The constructed edge NFA are distinguished only by
their start and end states (as rule (CR6) of Table 2 is not used), and have the following
structure:
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Step C succeeds since every edge automaton accepts some word, and Step D is omit-
ted since no concept atoms appear in the query. The only nontrivial role NFA isA(T)
which accepts any word that starts withT followed by an arbitrary number ofR. Due
to the presence of the query atomT(a, x) this NFA must be split along the path froma
overb to x, and there is only one split into two NFA that accept nonemptylanguages.
HenceA(T(a, x), a, b) accepts the single wordT, andA(T(a, x), b, x) accepts any se-
quence ofR. The only other “split” NFAA(S(x, a), x, a) is directly given byA(S), the
NFA accepting only the wordS. Finally in Step F the three existing split automata are
compared to the corresponding edge NFA.A(T(a, x), a, b) andE(a, b) accept a com-
mon wordT,A(T(a, x), b, x) andE(b, x) accept a common wordR, andA(S(x, a), x, a)
andE(x, a) accept a common wordS. Hence the query is accepted.

5 Correctness of the Algorithm

Proposition 2. Consider a regular consistentEL++ knowledge base KB and a conjunc-
tive query q. If the algorithm of Section 4 accepts q, then indeed KB|= q.

Proof. We use the notation from Section 4 to denote structures computed by the algo-
rithm. When terminating successfully, the algorithm has computed the following:

– A proof graph (N, L,E),
– For each role atomR(n,m) ∈ q, ak-splitA(R(n,m), n0, n1), . . . ,A(R(n,m), nk−1, nk)

of the NFAA(R), wherek is the length of the shortest path fromn to m in (N, L,E).

In the following, letI be some model ofKB. To showKB |= q, we need to provide
a mappingπ as in Section 2 forI. SinceI is arbitrary, this shows the entailment of
q. We can deriveπ from the proof graph, and then show its correctness based on the
conditions checked by the algorithm.

In Step A, the algorithm replaces variables by individual names or by other vari-
ables. This is no problem: whenever a queryq′ is obtained fromq by uniformly replac-
ing a variablex ∈ Var(q) by an individuala ∈ I (or variabley ∈ Var(q)), we have that
KB |= q′ impliesKB |= q. Indeed, any mappingπ′ for q′ can be extended to a suitable
mappingπ for q by settingπ(x) ≔ aI (π(x) ≔ yI). Thus we can assume w.l.o.g. that all
variablesx ∈ Var(q) also occur as nodes in the proof graph, i.e.x ∈ N.

In Step F, the algorithm checks non-emptiness of the intersection languages of the
NFA E(n,m), and one/all split NFAA(F, n,m), for eachn, m ∈ N with E(n,m) defined.
Thus for any pairn ∈ N, m ∈ Var(q), there is some wordw accepted byall of the
given NFA. Choose one such wordw(n,m). By the definition of the split NFA,w(n,m)
is a word overR, and we can assume this to be the case even when no split NFA (but
just the single edge automaton) are considered for a given edge.E(n,m) is of the form
A(L(n), L(m)) (Definition 2) for the selected labelsL(n) andL(m) of the proof graph.



Now by Theorem 2, the construction of Definition 2, and the fact thatKB is consis-
tent, it is easy to see thatE(n,m) accepts the wordw(n,m) = R1 . . .Rl iff KB |= L(n) ⊑
∃R1. . . .∃Rl .L(m). We employ this fact to inductively construct a mappingπ.

In Step B the algorithm has defined labelsL(x) for all x ∈ Var(q), and we will
retrace this process to constructπ. We claim that the following construction ensures
that, whenever a noden ∈ N is reachable,π(n) has been assigned a unique value such
thatπ(n) ∈ L(n)I. For starting the induction, setπ(a) ≔ aI for eacha ∈ I (which is
necessarily reachable and clearly satisfiesπ(a) ∈ L(a)I = {a}I). Now assume that in one
step the algorithm selected somex ∈ Var(q) that was not reachable yet, and noden ∈ N
which is reachable. As noted above,KB |= L(n) ⊑ ∃R1. . . .∃Rl .L(x) wherew(n, x) =
R1 . . .Rl , and hence there is an elemente ∈ L(x)I such that (π(n), e) ∈ RI1 ◦ . . . ◦ RIl
(where◦ denotes forward composition of binary relations). Pick onesuche and set
π(x) ≔ e. It is easy to see that the claim of the induction is satisfied.

In Step D it has been verified thatL(n) ⊑ C holds for eachC(n) ∈ q (using stan-
dard polynomial time reasoning forEL++), so we findπ(n) ∈ CI. It remains to show
that a similar claim holds for all binary query atoms. Thus consider some role atom
R(n,m) ∈ q, and letn = n0, . . . , nk = m denote the shortest path in the proof graph used
to split the role automaton. So far, we have definedw(ni, ni+1) only for cases where
ni+1 ∈ Var(q). By a slight overloading of notation, we now letw(ni , ni+1) for ni+1 ∈ I
denote some word accepted by the intersection ofE(ni, ni+1) and the specific split au-
tomatonA(R(n,m), ni, ni+1), which must exist as the algorithms must have verified non-
emptiness of the intersection language. Assuming thatw(ni, ni+1) = S1 . . .Sl , we note
that this still entailsKB |= L(n1) ⊑ ∃S1. . . .∃Sl .L(ni+1) . Sinceni+1 ∈ I , this actually
shows that (π(ni), π(ni+1)) ∈ SI1 ◦ . . . ◦ SIl .

The wordw = w(n0, n1) . . .w(nk−1, nk) is accepted byA(R), which is clear from the
construction in Definition 3 as the partsw(ni , ni+1) are accepted by the respective split
automata. Assume thatw = R1 . . .Rk. We conclude (π(n), π(m)) ∈ RI1 ◦ . . . ◦ RIk from
the construction ofπ and the above observations for the case of edges connecting to
individual elements. Thus by Proposition 1 we have (π(n), π(m)) ∈ RI as required. ⊓⊔

It remains to show that the algorithm is also complete. This is done by demonstrat-
ing that there are suitable nondeterministic choices that enable the algorithm to accept
a query whenever it is entailed. To guide those choices, we use the canonical modelI
introduced in Section 3.

Proposition 3. Consider a regular consistentEL++ knowledge base KB and a con-
junctive query q. If KB|= q, then there is a sequence of nondeterministic choices for the
algorithm of Section 4 such that it accepts q.

Proof. Consider the canonical modelI as constructed above. SinceKB |= q andI |=
KB, there is some mappingπ such thatI, π |= q. We will useπ to guide the algorithm.

In Step A, a variablex ∈ Var(q) is replaced byn ∈ Var(q)∪ I wheneverπ(x) = π(n).
For Step B, we choose the labellingL of the proof graph by settingL(e) ≔ ι(π(e)). As
argued in the proof of Lemma 1,δ ∈ CI iff KB |= ι(δ) ⊑ C, and hence we conclude that
π(e) ∈ CI implies thatKB |= L(e) ⊑ C for all e ∈ I ∪ Var(q). Thus all unary atoms ofq
are accepted by the algorithm.



Now in each step of the generation of the edgesE of the proof graph, the algorithm
needs to pick some (unreachable)x ∈ Var(q) and some reachable noden. We will utilise
the properties established in Section 3. By Property 1, there is a unique generating chain
for eachπ(x) where x is not reachable within the proof graph yet. Moreover, since
the chain of Property 1 is unique and shortest, it is also acyclic. Hence there is some
unreachablex such thatπ(x) is not generated by any element of the formπ(y) with y
unreachable. Pick one such elementx. Finally select one elementn ∈ I ∪ Var(q) such
thatπ(n) generatesπ(x), and such that there is no elementm for whichπ(m) generates
π(x) andπ(n) generatesπ(m). Construct an edgeE(m, x).

Now for any elementsn andm of the query, withm ∈ Var(q) andE(n,m) defined,
the automatonE(n,m) accepts a non-empty language. This is seen by combining Prop-
erty 2 with Theorem 2, where the second case of the theorem is excluded sinceKB is
consistent. The algorithm’s checks in Step C thus succeed.

The algorithm now has completed the proof graph construction, and the selection of
split automata is required next. For all query atomsR(n,m), we find that (π(n), π(m)) ∈
RI, and thus we can apply Property 3 to obtain a respective chainof elements and role
names, which we denote asδ0 . . . δk andR0 . . .Rk−1 in the remainder of this proof.

Let j > 0 denote the largest index ofδ0 . . . δk, such thatδ j is of the formπ(e1) for
somee1 ∈ I , if any such element exists. Otherwise, letj > 0 denote the smallest index
such thatδi is of the formπ(e1) for anye1 ∈ Var(q). We claim that there is a connection
betweenn ande1 in the proof graph. Clearly, this is true ife1 ∈ I since these edges
were constructed explicitly. Otherwise, Property 1 and ourchoice ofe1 imply that an
edge fromn to e1 was constructed by the algorithm. Starting byδ j+1, find all elements
δi of the formπ(e), e ∈ Var(q), and label them consecutively ase2, . . . , el . Note that this
sequence can be empty, in which case we definel ≔ 1. Obviously,el = m. We claim
thatn = e0 . . .el = m is the shortest path fromn to mwithin the proof graph. We already
showed the connection betweenn = e0 ande1. The connections betweenei andei+1 are
also obvious, since eache1 generatesei+1 by definition. Since the latter path is also the
only path frome1 to el , the overall path is clearly the shortest connection.

The algorithm now splitsA(R) along the pathn = e0 . . .el = m. For eachei , there is
an indexj(i) such thatδ j(i) = π(ei). Hence, for each pair (ei, ei+1), there is a correspond-
ing sequence of rolesRj(i)+1 . . .Rj(i+1) which we denote byr i (i = 0, . . . , l − 1), and the
concatenation of those sequences yields the originalR0 . . .Rk−1. By Proposition 1 and
Property 3, the automatonA(R) accepts the wordR0 . . .Rk−1. To split the automaton, we
consider one accepting run and defineqi to be the state of the automaton after reading
the partial sequencer i , for eachi = 0, . . . , l − 1. The statesqi are now used to construct
the split automataAi , and it is easy to see that those automata accept the sequences r i .

Now assume that all required split automata have been constructed in this way. Con-
sider any pair of query elementse, e′ ∈ I∪Var(q) for which a split automatonA(F, e, e′)
was constructed using a partial sequence of rolesr. We claim that the edge automaton
E(e, e′) acceptsr. Indeed, this follows from Property 2 and Theorem 2. This shows
non-emptiness of intersections between any single split automaton and the correspond-
ing edge automaton in the proof graph, and thus suffices for the case wheree′ ∈ I .

Finally, consider the case thate′ ∈ Var(q), and assume that two split automata
A(F, e, e′) andA(F′, e, e′) have been constructed for the given pair, based on two partial



role sequencesr andr ′. We claim thatr = r ′. Indeed, this is obvious from the fact that
r andr ′ both correspond to the unique generating sequence of roles for the elementse
ande′, which is part of the sequence constructed for Property 1. This shows thatr is
accepted both byA(F, e, e′) and byA(F′, e, e′). We conclude that the intersection of all
split automata and the edge automatonE(e, e′) is again non-empty.

The algorithm thus has completed all checks successfully and accepts the query.⊓⊔

6 Complexity of Query Answering for EL++

Finally, we harvest a number of complexity results from the algorithm of Section 4.

Lemma 2. Given a regularEL++ knowledge base KB and a conjunctive query q, the
entailment problem KB|= q is hard forNP w.r.t. the size of q, hard forP w.r.t. the size
of the ABox of KB, and hard forPS w.r.t. to the combined problem size, even when
restricting to simple RBoxes.

The hardness proofs in [11] apply known hardness results forthe data-complexity of
instance checking in fragments ofEL [12], evaluation of single Datalog clauses (NP-
complete, [13]), and emptiness of NFA intersection languages (PS-complete, [14]).

We remark that the above results are quite generic, and can beestablished for many
other DLs. Especially, NP-hardness w.r.t. knowledge base size can be shown for any
logic that admits an ABox, whereas PS hardness of the combined problem follows
whenever the DL additionally admits role composition and existential role restrictions.

Lemma 3. Given a regularEL++ knowledge base KB and a conjunctive query q, the
entailment problem KB|= q can be decided inP w.r.t. the size of the knowledge base,
in NP w.r.t. the size of the query, and inPS w.r.t. the combined problem size, given
that RBoxes are simple whenever KB is not fixed.

Proof. First consider Step A of Table 3. It clearly can be performed nondeterministi-
cally in polynomial time. If the query is fixed, the number of choices is polynomially
bounded, and so the whole step is executable in polynomial time.

Similar observations hold for Step B. Concept names and automata for edges can be
assigned in polynomial time by a nondeterministic algorithm (and thus in polynomial
space). If the query has fixed size, available choices again are polynomial in the size of
KB: the assignment of labelsL admits at most|C||Var(q)| different choices, and for each
such choice, there are at mostn2 possible proof graphs, wheren is the number of nodes
in the graph. Sincen and|Var(q)| are considered fixed, this yields a polynomial bound.

Further nondeterminism occurs in Step E. But if the query is fixed, each of the
polynomially many proof graphs dictates a number of splits that is bounded by the size
of the querym. Since splitting a role NFA intok parts corresponds to selectingk (not
necessarily distinct) states from this NFA, there are|QA|k different ways of splittingA.
Sincek is bounded by the size of the querym, we obtain an upper bound|Q|m

m
that

is still polynomial in the size ofKB (which, by our assumptions on simplicity of the
RBox, determines the maximum number of states|Q| of some role NFA). If the query
is not fixed, splitting can be done nondeterministically in polynomial time.



Now for Step F, the algorithm essentially has to check the emptiness of intersection
languages of various automata. Given NFAA1, . . . ,Al , this check can be done in two
ways, each being worst-case optimal for different side conditions of the algorithm:

(1) Initialise state variablesq1, . . . , ql as being the initial states of the involved NFA.
Then nondeterministically select one input symbol and one transition for this sym-
bol in each of the considered NFA, and update the statesq j accordingly. The algo-
rithm is successful if at some stage eachq j is a final state of the automatonA j . The
algorithm runs in NPS w.r.t. the accumulated size of the input automata.

(2) Iteratively compute the intersection NFA forA j = (Q j, Σ, δ j , i j, F j) andA j+1 =

(Q j+1, Σ, δ j+1, i j+1, F j+1). This intersection is the NFA (Q j×Q j+1, Σ, δ, (i j, i j+1), F j×

F j+1), with δ((a1, b1), (a2, b2)) = δ(a1, a2)∩ δ(b1, b2). The algorithm is successful if
the intersection is non-empty. This construction is polynomial if the number of the
input NFA is known to be bounded.

Method (1) establishes a general (nondeterministic) polynomial space procedure,
which by Savitch’s Theorem is also in PS. Method (2) can be used to establish
tighter bounds in special cases: each intersection might cause a quadratic increase of
the size of the NFA, but the number of required intersectionsis bounded ifKB or q are
fixed. Indeed, if the query is fixed, the number of required intersections is bounded by
the overall number of role atoms in the query. If the knowledge base is fixed, the number
of interesting intersections is bounded by the number of split NFA that can be produced
from role NFA constructed from the RBox, which is bounded by afixed value. In both
cases, checking intersections can be done deterministically in polynomial time. ⊓⊔

The below table summarises some common complexity measuresfor the case of
conjunctive query answering in regularEL++ knowledge bases. Whenever the RBox is
variable, we assume that it is simple. It should be remarked that TBox and ABox could
always be considered variable without increasing any of thegiven complexities.

Variable parts:
QueryRBox TBox ABox Complexity

Combined complexity × × × × PS-complete
Query complexity × NP-complete

Schema complexity × × × P-complete
Data complexity × P-complete

7 Conclusion

We have proposed a novel algorithm for answering conjunctive queries inEL++ knowl-
edge bases, which is worst-case optimal under various assumptions. To the best of our
knowledge, this also constitutes the first inference procedure for conjunctive queries in
a DL that supports complex role inclusions (including composition of roles) in the sense
of OWL 1.1. Showing undecidability of conjunctive queries for unrestrictedEL++, we
illustrated that the combination of role atoms in queries and complex role inclusion
axioms can indeed make reasoning significantly more difficult.



A compact automata-based representation of role chainsand (parts of) models al-
lowed us to establish polynomial bounds for inferencing in various cases, thus identify-
ing querying scenarios that are still tractable forEL++. Conjunctive queries inherently
introduce some nondeterministism, but automata can conveniently represent sets of pos-
sible solutions instead of considering each of them separately. We therefore believe that
the presented algorithm can be a basis for actual implementations that introduce addi-
tional heuristics to ameliorate nondeterminism.
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