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Abstract
We study the relationship between convergence spaces and convergence classes given

by means of both nets and filters, we consider the duality between them and we identify
in convergence terms when a convergence space coincides with a convergence class. We
examine the basic operators in the Vienna Development Method of formal systems devel-
opment, namely, extension, glueing, restriction, removal and override, from the perspective
of the Logic for Computable Functions. Thus, we examine in detail the Scott continuity, or
otherwise, of these operators when viewed as operators on the domain (X → Y ) of partial
functions mapping X into Y . The important override operator is not Scott continuous, and
we consider topologies defined by convergence classes which rectify this situation.
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1 Introduction

The uses of topology in studying theoretical aspects of computer science are varied and
wide. Many of them are related to domain theory and to programming language semantics
and hence, ultimately, to the Scott topology. But other important applications are known,
including: digital topology in image processing, the use of ideas from homotopy theory in “no
deadlock” proofs in concurrency, and the use of topology in logic programming, to mention a
few.

Of course, there are also many ways of specifying topologies, varying from the assignment
of families of sets to be taken as open, to the use of (ultra)metrics of various generality, through
to order-theoretic means. Yet another familiar method, though not, it appears, widely used in
computing is to specify convergence by means of convergence classes. Here, one is concerned
with conditions on a family of pairs consisting of a net in a set together with a point of that
set so that the given family generates a topology in which the convergent nets (and their
limits) are precisely the members of the given class. As a matter of fact, the Scott topology
on a domain has a simple characterization in these terms and we will use this later.

On the other hand, convergence structures (known as convergence spaces) more general
than topological spaces have been investigated in [1], and elsewhere, as a means of unifying
discrete and continuous models of computation, or hybrid systems. In a convergence space,
one is specifically given a notion of convergence at each point by means of families of filters,
see Section 2 and [1, 3, 5] for details. The notion of convergence thus specified is much
weaker than that which prevails in a topological space, although each convergence space has
a topology naturally associated with it. Furthermore, the topology just mentioned has, in
turn, an associated convergence class, and herein we call a convergence space topological if
it coincides with its associated convergence class. The embedding of topological spaces into
convergence spaces implied thereby is, of course, strict, see [3].

The motivation for this paper is the examination of certain aspects of convergence in
computer science, and is threefold, as follows.

First, it is precisely the convergence properties of the topologies used in [4, 12] which are
most useful in relation to termination and semantical questions in logic programming in the
presence of negation. Whilst not originally defined by means of convergence, the convergence
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properties of these topologies are natural and could indeed have been taken as definitive. This
point is examined in some detail in [13] where it is shown that convergence can be taken as
a fundamental concept in unifying the procedural point of view and the declarative point of
view in the context of logic programming with negation.

The second point concerns the Vienna Development Method (VDM) of formal system
specification as expounded particularly in [6, 9, 10]. VDM is a development method which
starts with the formal specification of the system requirements and ends, after a sequence
of refinement steps, with the implemented program code. At each refinement step, a number
of proof obligations have to be fulfilled which ensure that system requirements are met. In
the form of VDM developed in [9, 10], denoted by VDM♣ and termed the Irish School of
the VDM, preconditions are used, but not postconditions. Instead of using formal logic to
verify postconditions, proof obligation (of system invariants) is carried out constructively
using a calculus of operators defined on spaces of partial functions. The calculus aims, of
course, at reducing complicated calculations to routine symbol manipulation, especially those
calculations concerned with things like domain restriction and removal, extension of functions
and, in particular, override of functions (which is an important tool in modelling the process
of updating records, file systems etc.).

On the other hand, spaces of partial functions, and operators defined on them, arise as
particularly important examples of domains in Scott’s well-established, and extensive, Logic
for Computable Functions (LCF), see [11], which formalizes an abstract model of computabil-
ity. Thus, although their aims are rather different, it is of interest to contrast VDM♣ and
LCF to the extent of investigating the operators which arise within VDM♣ from the point
of view of LCF, and specifically to determine their computability, or otherwise, in terms of
Scott-continuity, and it is the second main purpose of this article to take some initial steps
in carrying out this process. Thus, we intend to study in detail the basic operators arising in
VDM♣ when considered as operators on the domain (X → Y ) of partial functions mapping X
to Y , and to examine their continuity principally in relation to the Scott topology. However,
it turns out that one of the most important operators, the override, is not Scott continuous,
and this fact necessitates the introduction of other topologies, related to the Scott topology,
to describe its behaviour. The particular topology we introduce here is in fact the smallest
refinement of the Scott and Lawson topologies meeting certain natural conditions, see Propo-
sition 3.18. All this is done by means of convergence classes, and we obtain thereby a simple
and natural treatment.

Third, we want to examine more closely the relationship between convergence spaces and
topological spaces from the point of view of convergence in an attempt to better understand
convergence spaces and their applications to modelling hybrid systems, including applications
to spaces of valuations in logic programming, and to spaces of partial functions as in Section 3.
Indeed, this paper and [13] are complementary: in [13] spaces of valuations in many-valued
logics are considered from the point of view of convergence, and here we focus on spaces of
partial functions from the same point of view.

In effect, the paper falls naturally into two parts. In the first of these, Section 2, we present
a definition of convergence spaces in terms of nets, and a definition of convergence classes in
terms of filters, both of which are new. Once that is done, the hoped-for duality between
convergence spaces and convergence classes in filter form, on the one hand, and convergence
spaces and convergence classes in net form, on the other, can be and, indeed, is established,
in Section 2; it is of course derived from the usual duality between nets and filters. Moreover,
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we view convergence spaces as generalizations of convergence classes (topological convergence
spaces), and we are able to identify precise conditions, in terms of convergence, under which
a convergence space is topological. In addition, there is the usual advantage of having both
formulations available: nets are intuitive and easy to use to check, say, continuity; filters are
preferred when features of the space need to be involved.

The second part of the paper, Sections 3 and 4, are devoted to the study of the operators
arising in VDM by means of convergence classes, as already mentioned. Taken together with
[13], it gives a detailed treatment, based on the convergence concepts in the first part, of
two of the main structures encountered in the theory of computation: spaces of valuations
and spaces of partial functions. Moreover, it addresses the question, by analogy with areas of
mathematical analysis, of what is a reasonable notion of convergence in spaces of partial func-
tions. This question was in fact one of the original motivations for the paper, and the answers
we provide are, we believe, both elegant and interesting quite apart from any applications to
VDM.

Acknowledgement We thank an anonymous referee for making some suggestions which
clarified certain results in the paper, and for drawing our attention to the need to examine
the effectiveness of the operators we discuss. This latter point is something which is already
under consideration by the authors in relation to the work of [6, 9, 10] and will be treated in
detail elsewhere, but see the remarks made in Section 5, Conclusions and Further Work.

2 Convergence Spaces and Convergence Classes

2.1 Preliminaries

We assume that the reader is familiar with the basic properties of nets, and we use [7, 16] as
our general references to this topic and for much of our notation. Thus, a net in a set X is
a function S : D → X, where (D,≤) is some directed set. The point S(n), n ∈ D, is often
denoted Sn or xn and we frequently refer to “the net (Sn)n∈D” or “the net (xn)n∈D” instead
of the net S. If no confusion can arise, we use (Sn) as an abbreviation for (Sn)n∈D. A tail of
a net (xn) in X is a set of the form {xn |n ≥ m}, where m is an element of D. As usual, if
(xn) is a net in X, then a property will be said to hold eventually with respect to (xn) if it
holds for all n ≥ m for some element m of the index set of (xn).

One point on which we will be specific, however, is in our use of the term “subnet”, and we
will adopt Kelley’s definition throughout (see [7]), noting that this form is more general than
that employed in [16]. Thus, a subnet T of a net S : D → X is a net T : M → X satisfying:
(i) T = S ◦ ϕ, where ϕ is a function mapping M into D, and (ii) for each n ∈ D, there exists
m ∈ M such that ϕ(p) ≥ n whenever p ≥ m. The point S ◦ ϕ (m) is often denoted Snm or
xnm , and we refer to the subnet (xnm)m∈M of (xn)n∈D.

As usual, a net (Sn) in a topological space X will be said to converge to x ∈ X, written
Sn → x or limn Sn = x, if each neighbourhood U of x contains a tail of (Sn). The following
elementary fact will be used quite often in the sequel: if E is a subset of a topological space
X, then x ∈ E iff there exists a net (xn) in E with xn → x, where E denotes the closure of
E in X.

Concerning filters, filter bases and ultrafilters, we again assume a basic familiarity with
these topics and refer the reader to [16] for all the background and notation we need. Thus,
a filter A on a set X is a non-empty collection of non-empty sets closed under the processes
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of taking finite intersections and superset. In particular, a filter A in a topological space X
will be said to converge to x ∈ X, written A → x, if A is finer than the neighbourhood filter
N(x) at x, that is, N(x) ⊆ A. Also, if A ⊆ X, then the filter determined by A, namely the
set of all supersets of A, will be denoted by [A]; in case A is a singleton set {x}, we denote
this ultrafilter by [x] and refer to it as the point filter at x. The analogue in terms of filters
of the earlier-mentioned elementary fact concerning closure, which again will be used quite
often, is the following: if E is a subset of a topological space X, then x ∈ E iff there exists a
filter A on X with E ∈ A and A → x.

Of course, the theory of nets and the theory of filters are dual in that any topological fact
that can be established by means of the one can equally well be established by means of the
other. The exact translation of each of these theories into the other can be found in many
places, but we follow [16] in this regard and include next the bare details which we will need
later.

Let (xn) be a net in X and, for each n ∈ D, let Bn = {xm |m ≥ n} be a tail of (xn).
Let C denote the collection {Bn |n ∈ D}. Then C is the base for a filter called the filter
generated by the net (xn). On the other hand, let A be a filter on X and let DA denote the set
{(x, A) |x ∈ A ∈ A}. We define an ordering ≤ on DA by (x1, A1) ≤ (x2, A2) if A2 ⊆ A1. Then
(DA,≤) is a directed set, and the mapping S : DA → X defined by S(x, A) = x determines
a net in X called the net based on the filter A. The precise connection between these two
notions is contained in the following result.

2.1 Theorem Let X be a topological space and let x be an element of X. Then the following
statements hold.
(a) A filter A on X converges to x iff the net based on A converges to x.
(b) A net (xn) in X converges to x iff the filter generated by (xn) converges to x.

Finally, we remind the reader that a closure operator (also known as a Kuratowski, or
topological, closure operator) on a set X is a mapping c : P(X) → P(X), from the power set
P(X) of X into itself, subject to the following axioms. (a) ∅c = ∅. (b) A ⊆ Ac for all A ⊆ X.
(c) (A ∪B)c = Ac ∪Bc for all A, B ⊆ X. (d) Ac = (Ac)c for all A ⊆ X.

The main fact we need concerning closure operators is the following well-known theorem.
Let X be a non-empty set and let c : P(X) → P(X) be a closure operator on X. Then
T = {X \ A |A ⊆ X, A = Ac} is a topology on X in which A = Ac for each subset A of X.
Thus, Ac is the topological closure in X of each subset A of X with respect to the topology T
determined by c.

2.2 Convergence Spaces in Filter and Net Form

We expound here only that part of the theory of convergence spaces which is closely related
to the theory of convergence classes as needed later on. For more information on convergence
spaces given in terms of filters, see [1, 3, 5].

We begin this section by studying convergence spaces given in the conventional way in
terms of filters. We shall henceforth usually refer to these as “convergence spaces in filter
form” in order to distinguish them from the form we give later using nets, which is new. The
three results we present concerning convergence spaces in filter form are well-known, see [1],
but we include those details of proof, of the third, that we need later on.

2.2 Definition (Convergence Space in Filter Form) Let X be a non-empty set. The
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pair (X,F) = (X, (Fx)x∈X) is called a convergence space in filter form if, for each x ∈ X, Fx

is a collection of filters on X with the following properties.

(a) The point filter [x] belongs to Fx for each x ∈ X (point filter axiom).

(b) If A ∈ Fx and B ⊇ A is a filter on X, then B ∈ Fx (closure under superfilters).

One sometimes uses another notation for convergence spaces in filter form. One writes A ↓ x
iff A ∈ Fx and refers to the convergence space (X, ↓) instead of (X,F). Thus, we interpret ↓
as a relation between filters on X and elements of X. If A ∈ Fx, we say A converges to x.

We say that a convergence space (X,F) in filter form is pointed if, for each x ∈ X, we
have

⋂
Fx ∈ Fx.

Finally, a subset O ⊆ X is said to be open in the induced topology of a convergence space
(X,F) in filter form if A ↓ x ∈ O always implies O ∈ A (so that A ⊇ [O]), where A ↓ x ∈ O
means “A converges to x and x ∈ O”.

2.3 Lemma For each x ∈ X,
⋂
Fx is a filter coarser than each A ∈ Fx. Furthermore, for

each A ∈
⋂
Fx, we have x ∈ A.

2.4 Lemma The induced topology of a convergence space (X,F) in filter form is a topology
on X.

2.5 Lemma Every topological space (X, T ) is representable as a convergence space (X,F)
in filter form such that the induced topology of (X,F) is T .

Proof. For each x ∈ X, let Fx be the set of all filters A on X such that A ⊇ N(x), where
N(x) denotes the neighbourhood filter at x with respect to the topology T . Obviously, Fx

has the properties listed in the definition of a convergence space in filter form. So, we choose
F = (Fx)x∈X .

First, let O ∈ T and suppose that A ↓ x ∈ O. We immediately get O ∈ N(x) ⊆ A and,
as x was chosen arbitrarily, we see that O is open with respect to the induced topology.

Next, let O be open with respect to the induced topology. Then N(x) ↓ x ∈ O implies
O ∈ N(x). Therefore, there exists an open set Ox ∈ N(x) ∩ T with Ox ⊆ O, and we obtain
O =

⋃
x∈O Ox ∈ T . So, O is open with respect to T , as required. �

2.6 Definition Let (X, T ) be a topological space. The convergence space in filter form in-
duced by T is defined as follows: A ↓O x iff A ⊇ N(x) is a filter on X, where N(x) is the
neighbourhood filter at x in T . A convergence space (X, ↓) in filter form is called a topological
convergence space (in filter form) if there is a topology T on X with the property that the
convergence space in filter form induced by T coincides with (X, ↓). We sometimes use the
notation (X, ↓O) to indicate that a convergence space is a topological convergence space.

We now turn our attention to formulating the notion of convergence space in terms of
nets, and obtain duals of each of the results above. Results of the later parts of this section
show that the definition we give and the corresponding duality are both highly satisfactory.

2.7 Definition (Convergence Space in Net Form) Let X be a non-empty set. The pair
(X,S) = (X, (Ss)s∈X) is called a convergence space in net form if, for each s ∈ X, Ss is a
non-empty collection of nets in X with the following properties.
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(a) If S : D → X is a constant net, that is, Sn = s ∈ X for all n ∈ D, then S ∈ Ss.

(b) If S ∈ Ss and T is a subnet of S, then T ∈ Ss.

We will sometimes use another notation for convergence spaces in net form. We write S ↓ s
iff S ∈ Ss and refer to the convergence space (X, ↓) instead of (X,S). Thus, we interpret ↓ as
a relation between nets in X and elements of X. If S ∈ Ss, we say S converges to s.

A subset O ⊆ X is said to be open in the induced topology of a convergence space (X,S)
in net form if S ↓ s ∈ O always implies that there exists n ∈ D with Sm ∈ O for all m ≥ n.
Here, of course, S ↓ s ∈ O means “S converges to s and s ∈ O”.

By analogy with the results above for convergence spaces in filter form, we prove that
the induced topology just defined really is a topology, and that every topological space is
representable as a convergence space in net form in such a way that the induced topology of
the convergence space coincides with the original topology of the topological space.

2.8 Lemma The induced topology of a convergence space (X,S) in net form is a topology
on X.

Proof. From the definition, ∅ and X are obviously open sets in the induced topology.
Let (Oi)i∈I be a family of open sets in the induced topology of (X,S). Let O =

⋃
i∈I Oi,

and suppose that S ↓ s ∈ O. Then there exists i ∈ I and n ∈ D such that s ∈ Oi and
Sm ∈ Oi ⊆ O for all m ≥ n. Since s ∈ O was chosen arbitrarily, we see that O is an element
of the induced topology.

Now let O1, O2 ⊆ X be open sets in the induced topology of (X,S). Let O = O1 ∩O2 and
suppose that S ↓ s ∈ O. Then there exist n1, n2 ∈ D such that Sn ∈ Oi for all n ≥ ni, i = 1, 2.
Since D is directed, there exists n0 ∈ D with n0 ≥ n1, n2, and we have Sn ∈ O for all n ≥ n0.
Because s is an arbitrary element of O, we conclude that O is an element of the induced
topology, as required. �

2.9 Lemma Every topological space (X, T ) is representable as a convergence space (X,S)
in net form such that the induced topology of (X,S) is T .

Proof. We define S ∈ Ss iff S : D → X is a net with Sn → s with respect to T . Obviously
Ss, s ∈ X, fulfills the conditions listed in the definition of a convergence space in net form.
So, we choose S = (Ss)s∈X .

We show that the induced topology of (X,S) is T . First, let O be open with respect to T
and suppose that S ↓ s ∈ O. By definition, we have Sn → s with respect to T and, because
O ∈ T , we conclude that there exists n ∈ D with Sm ∈ O for all m ≥ n. Since s is an arbitrary
element of O, we see that O is an open set of the induced topology of (X,S).

Next, let O be open with respect to the induced topology. Suppose O /∈ T so that X \O

is not closed with respect to T . Then there exists s ∈ X \O
T
∩ O, where X \O

T
denotes

the closure of X \ O in X relative to T . Thus, by the elementary facts noted earlier, there
exists a net S : D → X with Sn ∈ X \ O for all n ∈ D, and also Sn → s ∈ O. Hence, we
have S ↓ s ∈ O. But O is open in the induced topology. Therefore, there exists n ∈ D such
that Sm ∈ O for all m ≥ n, which contradicts the fact that Sn ∈ X \O for all n ∈ D. So, we
conclude that O ∈ T , as required. �
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2.10 Definition Let (X, T ) be a topological space. The convergence space in net form in-
duced by T is defined as follows: S ↓O s iff S is a net in X with Sn → s with respect to
T . A convergence space (X, ↓) in net form is called a topological convergence space (in net
form) if there is a topology T on X with the property that the convergence space in net form
induced by T coincides with (X, ↓). We sometimes use the notation (X, ↓O) to indicate that
a convergence space is a topological convergence space.

2.3 Convergence Classes in Net and Filter Form

As already noted, convergence spaces are normally defined in terms of filters whilst con-
vergence classes are defined in terms of nets. We begin this section by briefly considering
convergence classes defined by means of nets, following [7], before presenting a treatment of
them defined by means of filters which gives the duality we want between the two approaches.
The same terminology (net and filter form) as used in the previous section will be adopted
here and in the sequel to distinguish the two definitions.

2.11 Definition (Convergence Class in Net Form) Let X be an arbitrary non-empty
set. We call C a convergence class for X in net form if C is a set of pairs each consisting of a
net S in X and a point s of X such that the conditions listed below are satisfied. Instead of
(S, s) ∈ C we also use the notation S converges (C) to s or limn Sn ≡ s (C), see [7, Page 74].

(a) If S : D → X is a constant net in X, that is, Sn = s ∈ X for all n ∈ D, then (S, s) ∈ C.

(b) If (S, s) ∈ C and T is a subnet of S, then (T, s) ∈ C.

(c) If (S, s) 6∈ C, then there exists a subnet T of S such that for every subnet R of T we
have (R, s) 6∈ C.

(d) Let D be a directed set, let Em be a directed set for each m ∈ D, let F denote the product
directed set D ×

∏
m∈DEm, and let F ′ denote the fibred product D ×D

⋃
m∈DEm =

{(m, n) |m ∈ D, n ∈ Em}. Let R : F → F ′ be defined by R(m, f) = (m, f(m)) for
each (m, f) ∈ F and let S : F ′ → X be a function. If limm limn S(m, n) ≡ s(C), then
(S ◦R, s) ∈ C.

A few comments concerning this definition are in order. First, conditions (a) and (b) reflect
elementary properties of net convergence in a topological space. Second, if a net S : D → X
does not converge to s in the topological space X, there must exist U ∈ N(s) and a cofinal
subset D′ ⊆ D such that Sn ∈ X \ U for all n ∈ D′. This fact is the reason for stipulating
condition (c) in the above definition. Third, the iterated limits theorem, see [7, page 69], is
the motivation for condition (d) in the definition. Finally, by a product directed set

∏
m∈DIm,

we understand of course the pointwise ordering on the product
∏

m∈DIm of the directed sets
Im; thus, for elements f and g of

∏
m∈DIm, we have f ≤ g iff f(m) ≤ g(m) for each m ∈ D.

We now record the main theorem concerning convergence classes in net form. This result
is basic to the sort of applications we make later in this paper and elsewhere. However, the
last part of the proof given in [7, Theorem 9, page 75] appears to be incorrect (the net
{T ◦U(m, n), n ∈ Em} defined there is clearly not defined), and therefore we take the trouble
to fill this gap.
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2.12 Theorem Let C be a convergence class in net form for a non-empty set X. For each
A ⊆ X, let Ac = {s ∈ X | there is a net S in A with (S, s) ∈ C}. Then c is a closure operator
on X and hence defines a topology T on X. Moreover, we have (S, s) ∈ C iff Sn → s with
respect to T .

Proof. Following the proof in [7, Theorem 9, pp. 74–75], suppose that it is already established
that c is a closure operator on X, and that convergence (C) of S to s implies convergence
Sn → s relative to T . Then it remains to show that convergence Sn → s with respect to T
implies that (S, s) ∈ C. Suppose in fact that (S, s) /∈ C. By condition (c) in the definition of
C, there exists a subnet T : D → X of S such that for each subnet R of T we have (R, s) /∈ C.
For each m ∈ D, let Dm = {n ∈ D |n ≥ m} and let Am = T (Dm). Since Dm is cofinal in D,
we have that T |Dm is a subnet of T which must converge to s with respect to T since S and,
hence T , have this property. Using the elementary facts quoted earlier concerning nets and
closure, the fact that c defines the topology T and the fact that closure relative to c is the
same thing as closure relative to T , we get s ∈ (Am)c for each m ∈ D. Therefore, we obtain,
for each m ∈ D, a net U(m, •) : Em → Am with (U(m, •), s) ∈ C. We apply condition (d) in
the definition of C. Let F and R be as defined in condition (d). Then we get (U ◦ R, s) ∈ C.
Because we have U ◦ R(m, f) ∈ Am, there exists nm,f ∈ Dm with U ◦ R(m, f) = Tnm,f

for
all (m, f) ∈ F . We define ϕ : F → D by ϕ(m, f) = nm,f for all (m, f) ∈ F and obtain
U ◦ R = T ◦ ϕ. Finally, given m ∈ D, take any (m, f) ∈ F , that is, choose any f . Then, if
(m′, g) ≥ (m, f), we have ϕ(m′, g) = nm′,g ≥ m′ ≥ m. Therefore, U ◦ R is a subnet of T and
(U ◦R, s) ∈ C, which gives a contradiction to our present assumption. We therefore conclude
that (S, s) ∈ C to finish the proof. �

We now turn to the main topic of this subsection, namely, the provision of conditions on
classes of filters which ensure that they determine a topology in which the resulting convergent
filters are precisely the filters first given. The first step is to provide a suitable filter form of
the theorem on iterated limits for nets, as follows.

2.13 Theorem Let D be an index set, let (Fd)d∈D be a family of filters on a topological
space (X, T ), let (Ad)d∈D be a family of subsets of X such that {Ad | d ∈ D} is a filter base
on X and let S = {sd | d ∈ D} ⊆ X, s ∈ X. Suppose that for all d ∈ D we have

Ad ∈ Fd, Fd → sd and for all s′ ∈ S there is d′ ∈ D such that Ad ∈ Fd′ , Fd′ → s′. (1)

Let F be a filter with S ∈ F and such that F → s. Then there exists a filter G on X with
Ad ∈ G for all d ∈ D and G → s.

Proof. Suppose that the premises of our claim are satisfied. From condition (1), we conclude
sd ∈ S ⊆ Ad for all d ∈ D. Because S ∈ F and F → s, we obtain s ∈ S. In particular, we have
s ∈ S ⊆ Ad for all d ∈ D. Let B = {Ad∩U | d ∈ D, U ∈ N(s)}, noting that these sets are non-
empty since s ∈ Ad for all d. Then B is a filter base because, for all d, d′ ∈ D, U, U ′ ∈ N(s),
there exists d′′ ∈ D with Ad′′ ⊆ Ad ∩ Ad′ and hence

∅ 6= Ad′′ ∩ (U ∩ U ′) ⊆ (Ad ∩ Ad′) ∩ (U ∩ U ′) = (Ad ∩ U) ∩ (Ad′ ∩ U ′).

Let G be the filter with base B. We have N(s) ⊆ G and Ad ∈ G for all d ∈ D. In particular,
we obtain G → s. �
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Condition (d) in the definition of convergence classes in filter form given below is inspired
by Theorem 2.13. Condition (a) is inspired by considering the filter generated by a constant
net, and condition (b) by the fact that every filter G finer than F with F converging to x also
converges to x. Finally, condition (c) is clearly necessary by elementary properties of conver-
gence. A similar definition of classes in filter form can be found in [14] where conditions (a)
to (c) only of the following definition are used, but with correspondingly weaker conclusions.

2.14 Definition (Convergence Class in Filter Form) Let X be a non-empty set. A con-
vergence class C for X in filter form is a set of pairs (F , s) each consisting of a filter F on X
and an element s of X subject to the following conditions. If (F , s) ∈ C, we say F converges
(C) to s and sometimes write F → s (C).

(a) Let s ∈ X and let F = {F ⊆ X | s ∈ F} = [s] be the point ultrafilter on X at s. Then
(F , s) ∈ C.

(b) If (F , s) ∈ C and G is a filter on X finer than F , then (G, s) ∈ C.

(c) If (F , s) /∈ C, then there exists a filter F ′ ⊇ F such that, for each filter G ⊇ F ′, we have
(G, s) /∈ C.

(d) Let D be an index set, let (Fd)d∈D be a family of filters on X, let (Ad)d∈D be a family
of subsets of X such that {Ad | d ∈ D} is a filter base on X and let S = {sd | d ∈ D} ⊆
X, s ∈ X. Suppose that for all d ∈ D we have

Ad ∈ Fd, (Fd, sd) ∈ C and ∀ s′ ∈ S ∃ d′ ∈ D such that Ad ∈ Fd′ , (Fd′ , s
′) ∈ C.

Let F be a filter with S ∈ F and such that (F , s) ∈ C. Then there exists a filter G on
X with Ad ∈ G for all d ∈ D and (G, s) ∈ C.

The main theorem concerning convergence classes in filter form is the following analogue
of Theorem 2.12.

2.15 Theorem Let C be a convergence class in filter form for a non-empty set X. For each
A ⊆ X, let Ac = {s ∈ X | there is a filter F on X with A ∈ F and (F , s) ∈ C}. Then c is a
closure operator on X and hence defines a topology T on X. Moreover, we have (F , s) ∈ C
iff F → s with respect to T .

Proof. First we show that c is a closure operator on X.
(i) It is clear that ∅c = ∅.
(ii) We show A ⊆ Ac. Let s ∈ A. We have A ∈ F = {F ⊆ X | s ∈ F} = [s]. Using condition
(a) in the definition of C, we get (F , s) ∈ C and conclude that s ∈ Ac.
(iii) We show (A ∪ B)c = Ac ∪ Bc. Let s ∈ Ac. Then there exists a filter F on X with
A ∈ F and (F , s) ∈ C. Since F is a filter, we obtain that (A ∪ B) ∈ F and conclude that
s ∈ (A ∪B)c. In the same way, one proves Bc ⊆ (A ∪B)c. Now let s ∈ (A ∪B)c. Then there
exists a filter F on X with (A ∪ B) ∈ F and (F , s) ∈ C. Let B1 = {F ∩ A |F ∈ F} and
B2 = {F ∩B |F ∈ F}. Assume ∅ ∈ B1 ∩B2. We obtain F1, F2 ∈ F with F1 ∩A = F2 ∩B = ∅
and conclude (F1 ∩F2)∩ (A∪B) = ∅, which contradicts the fact that (A∪B), (F1 ∩F2) ∈ F .
Therefore, B1 or B2 is a base for a filter F ′ ⊇ F with A ∈ F ′ or B ∈ F ′. Using condition (b)
in the definition of C, we conclude that (F ′, s) ∈ C. So, s ∈ Ac ∪Bc.
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(iv) We show (Ac)c = Ac. Using (ii), we have Ac ⊆ (Ac)c. Let s ∈ (Ac)c. Then there exists a
filter F with Ac ∈ F and (F , s) ∈ C. For each a ∈ Ac, there exists a filter Fa with A ∈ Fa

and (Fa, a) ∈ C. We use condition (d) in the definition of C. Let D = Ac, let Aa = A and
sa = a for all a ∈ D, and let S = Ac. Then the premises of condition (d) are satisfied, and
there exists a filter G on X with A ∈ G and (G, s) ∈ C. We conclude that s ∈ Ac.

Next we prove the equivalence statement in the theorem.
(v) We show (F , s) ∈ C implies F → s with respect to T . Suppose that F → s with respect
to T is false. Then there exists U ∈ N(s) ∩ T with U /∈ F . Let B = {F ∩ (X \ U) |F ∈ F}.
Since, for all F ∈ F , F ∩ (X \ U) 6= ∅ (otherwise there would exist F ∈ F with F ⊆ U , that
is, U ∈ F , which is a contradiction), B is a base for a filter F ′ ⊇ F . Using condition (b) in
the definition of C, it follows that (F ′, s) ∈ C. Because B ⊆ X \ U for all B ∈ B, we have
X \ U ∈ F ′ and so we get s ∈ (X \ U)c in contradiction to X \ U = (X \ U)c and s ∈ U . So,
F → s with respect to T is true.
(vi) We show that F → s with respect to T implies that (F , s) ∈ C. Suppose (F , s) /∈ C.
By condition (c) in the definition of C, there exists a filter F ′ ⊇ F such that, for all filters
G ⊇ F ′, we have (G, s) /∈ C. We have N(s) ⊆ F ⊆ F ′. Therefore, we obtain s ∈

⋂
F∈F ′ F .

The definition of c and the equality of closure in c and in T yields, for each F ∈ F ′, a filter
FF with F ∈ FF and (FF , s) ∈ C. We use condition (d) in the definition of C. Let D = F ′,
let AF = F , and let sF = s for each F ∈ F ′. Due to condition (a) in the definition of C, we
get, for the point ultrafilter F ′′ = [s], the property (F ′′, s) ∈ C. So, the premises of condition
(d) are satisfied and we obtain a filter G on X with F ∈ G for all F ∈ F ′ and (G, s) ∈ C.
In particular, G ⊇ F ′ which is a contradiction to our present assumption. Thus, we conclude
(F , s) ∈ C, as required to finish the proof. �

2.16 Remark It is an immediate consequence of the definitions that each convergence class
in net form resp. filter form is a convergence space in net form resp. filter form.

Some natural questions now immediately arise as a consequence of the results above.
(1) Every convergence class induces a topology on the underlying space. This topology induces
on the other hand a convergence space (see Lemma 2.5 and Lemma 2.9). Is this convergence
space once again a convergence class in net or filter form? If so, is this convergence class equal
to the original convergence class?
(2) Is every convergence class in filter form a pointed convergence space? Is the induced
topology of the convergence space equal to the induced topology of the convergence class?
(3) Can one transform each convergence class in net form into a convergence class in filter
form (and vice versa) such that both induce the same topology?

It is the purpose of the rest of this section to give positive answers to all these questions, and
we proceed to do this next. In the following, we denote the induced topology of a convergence
space (X,S) or (X,F) by TX. Each convergence class will also be interpreted as a convergence
space with extra properties. Therefore, if we speak of a convergence class we will sometimes
use the notation employed for convergence spaces to denote elements of the convergence class.

2.4 Properties of Convergence Classes in Net Form

2.17 Lemma Let X be a non-empty set and let C be a convergence class for X in net form.
Then the induced topology T of the convergence class coincides with TX, that is, TX = T .
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Proof. Let O ∈ TX be an open set of the underlying convergence space in net form. We
show that X \ O is closed with respect to T . Suppose that there exists s ∈ (X \ O)c ∩ O.
Then there exists a net S :D → X \ O with Sn ↓ s ∈ O. Since O ∈ TX, there exists n ∈ D
such that Sm ∈ O for all m ≥ n, which contradicts the fact that Sn ∈ X \ O for all n ∈ D.
We conclude (X \O)c = X \O or, in other words, that O ∈ T .

Now let O ∈ T and suppose that S ↓ s ∈ O, so that S : D → X is a net and Sn → s ∈ O
with respect to T . We conclude that there exists n ∈ D with Sm ∈ O for all m ≥ n. Since
s ∈ O was chosen arbitrarily and because of the definition of TX, we get O ∈ TX. �

2.18 Lemma (Associated Convergence Space) Let X be a non-empty set and let C be
a convergence class for X in net form. Let T be the induced topology of C, let (X, ↓O) be the
induced convergence space (see Definition 2.10) with respect to the topology T and, finally,
let S ↓C s iff (S, s) ∈ C. Then we have ↓O=↓C.

Proof. Applying Definition 2.10 and using Theorem 2.12 we conclude, for each net S in X
and s ∈ X, that

S ↓O s ⇐⇒ Sn → s with respect to T ⇐⇒ S ↓C s.

�

2.19 Lemma Let (X, T ) be a topological space. Let (X, ↓O) be the induced convergence
space in net form with respect to the topology T . We define (S, s) ∈ C iff S ↓O s. Then C is
a convergence class in net form.

Proof. Since (X, ↓O) is a convergence space in net form, conditions (a) and (b) in the definition
of convergence class in net form are already satisfied. We have to verify conditions (c) and
(d). We have

(S, s) ∈ C ⇐⇒ S ↓O s ⇐⇒ Sn → s with respect to T .

First we prove condition (c). Let S : D → X be a net and let (S, s) /∈ C, so that (Sn) does
not converge to s relative to T . Then there is a neighbourhood U of s, and a cofinal subset
D′ of D such that Sm ∈ X \ U for all m ∈ D′. Then the restriction of S to D′ is a subnet T
of S with the property that every subnet R of T fails to converge to s relative to T . So, for
each subnet R of T , we have (R, s) /∈ C, as required.

Condition (d) follows immediately because we defined (S, s) ∈ C iff Sn → s with respect to
T . We have only to apply the theorem on iterated limits ([7, Page 69]) to finish the argument.

�

2.5 Properties of Convergence Classes in Filter Form

2.20 Lemma Let X be a non-empty set and let C be a convergence class for X in filter form.
Then the induced topology T of the convergence class coincides with TX, that is, TX = T .

Proof. Let O ∈ TX be an open set of the underlying convergence space in filter form. We
show that X \O is closed with respect to T . Assume that there exists s ∈ (X \O)c∩O. Then
there exists a filter F on X with X \O ∈ F and F ↓ s ∈ O. Since O ∈ TX, we conclude that
O ∈ F , which contradicts X \O ∈ F . Thus, we get X \O = (X \O)c, so that O is open with
respect to T .

12



Now let O ∈ T , O 6= ∅. Let A be a filter on X with A ↓ x ∈ O. Assume that O /∈ A. Then,
for all B ⊆ O, we have B /∈ A, and we conclude that for all B ∈ A we have B ∩ (X \O) 6= ∅.
We define B = {B ∩ (X \ O) |B ∈ A}. Then B is a base for a filter G ⊇ A. Therefore, we
obtain G ↓ x ∈ O and X \ O ∈ G. This means that x ∈ (X \ O)c = X \ O as O ∈ T , and we
get a contradiction. Thus, O ∈ A and, as x ∈ O is arbitrary, we conclude that O ∈ TX. �

2.21 Lemma (Associated Convergence Space) Let X be a non-empty set and let C be
a convergence class for X in filter form. Let T be the induced topology of C, let (X, ↓O) be
the induced convergence space (see Definition 2.6) with respect to the topology T and, finally,
let F ↓C x iff (F , x) ∈ C. Then we have ↓O=↓C.

Proof. Applying Definition 2.6 and using Theorem 2.15 we conclude, for each filter F on X
and x ∈ X, that

F ↓O x ⇐⇒ F → x with respect to T ⇐⇒ F ↓C x.

�

2.22 Corollary Let X be a non-empty set. Then every convergence class C for X in filter
form is a pointed convergence space in filter form.

Proof. Let x ∈ X. We have
⋂
Fx =

⋂
{A |A ↓C x} =

⋂
{A |A ↓O x}, and the definition of

an induced convergence space in filter form (Definition 2.6) yields
⋂
Fx = N(x) ∈ Fx. �

2.23 Lemma Let (X, T ) be a topological space. Let (X, ↓O) be the induced convergence
space in filter form with respect to the topology T . We define (F , x) ∈ C iff F ↓O x. Then C
is a convergence class in filter form.

Proof. Since (X, ↓O) is a convergence space in filter form, conditions (a) and (b) in the
definition of convergence class in filter form are already satisfied. We have to verify conditions
(c) and (d). We have

(F , x) ∈ C ⇐⇒ F ↓O x ⇐⇒ F ⊇ N(x) ⇐⇒ F → x with respect to T .

First we prove condition (c). Let (F , s) /∈ C. There exists U ∈ N(s) with U /∈ F . Since F
is a filter, for all B ⊆ U we have B /∈ F and we conclude that, for all F ∈ F , we have
F ∩ (X \ U) 6= ∅. Let B = {F ∩ (X \ U) |F ∈ F}. Then B is a base for a filter F ′ ⊇ F . Now
let G ⊇ F ′ be a filter on X. Assume that U ∈ G. Because B ⊆ G, there exists F ∈ F with
F ∩ (X \ U) ∈ B ⊆ F ′ ⊆ G and ∅ = U ∩ F ∩ (X \ U) ∈ G, which is a contradiction. Thus,
U /∈ G and, for all filters G ⊇ F ′, we get (G, s) /∈ C, so that condition (c) is satisfied.

Condition (d) follows immediately because we defined (F , s) ∈ C iff F → s with respect
to T . We have only to apply Theorem 2.13 to complete the proof. �

2.24 Remark Lemma 2.18 and Lemma 2.19 resp. Lemma 2.21 and Lemma 2.23 imply that,
for every convergence class C for X in net form resp. filter form, there exists a topology T
on X such that the induced convergence space is the convergence class C, and that every
topology T on X induces a topological convergence space in net form resp. filter form which
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is a convergence class in net form resp. filter form. Thus, the class of topological convergence
spaces in net form resp. filter form is exactly the class of all convergence classes in net form
resp. filter form. Indeed, the two conditions (c) and (d), in either definition of a convergence
class, give the conditions needed for the convergence structure provided by a convergence
space (in net form) (resp. in filter form) to be topological.

2.6 Interchange of Form in Convergence Classes

In the following, we will denote the closure operator of a convergence class in net form by c1,
and the closure operator of a convergence class in filter form by c2. Let X be a non-empty set
and let C be a convergence class on X in net form. By Theorem 2.12, c1 defines a topology
T on X with the property (S, s) ∈ C iff Sn → s with respect to T . As we have just seen in
Lemma 2.23, T defines a convergence class C ′ on X in filter form with the property

(F , s) ∈ C ′ ⇐⇒ F ↓O s ⇐⇒ F ⊇ N(s) ⇐⇒ F → s with respect to T .

Thus, the induced topologies of C and C ′ are equal, that is, we have Ac1 = Ac2 for all A ⊆ X.
In other words, we have for all A ⊆ X

Ac1 = {s ∈ X | there exists net S in A such that (S, s) ∈ C}
= {s ∈ X | there exists filter F such that A ∈ F and (F , s) ∈ C ′} = Ac2 .

In fact, we can construct C ′ from C by means of the following result.

2.25 Lemma Let X, C and C ′ be as defined above. Then we have that (F , s) ∈ C ′ iff there
exists a net S : D → X such that (S, s) ∈ C and B = {Bn |n ∈ D} is a base for F , where
Bn = {Sm |m ≥ n}.

Proof. For sufficiency, let (S, s) ∈ C and suppose that O ∈ N(s) is open. Then there exists
n ∈ D such that Sm ∈ O for all m ≥ n, and we have Bn ⊆ O. Since F is a filter, we get
O ∈ F and therefore we have N(s) ⊆ F . Thus, we conclude (F , s) ∈ C ′ by the definition of
C ′.

Conversely, let (F , s) ∈ C ′. By definition, F → s with respect to T . Let S : DF → X
be the net based on F . By Theorem 2.1 (a), it follows that Sn → s with respect to T .
Thus, we obtain (S, s) ∈ C by means of the definition of C. The construction of S yields
B(x,F ) = {S(x′,F ′) | (x′, F ′) ≥ (x, F )} = F for all x ∈ F ∈ F . In particular, we have B =
{B(x,F ) | (x, F ) ∈ DF} = F is a base for F . �

Next, working in the opposite direction, we start with a convergence class C ′ for X in filter
form. Let T be the induced topology, so that we have

(F , s) ∈ C ′ ⇐⇒ F → s with respect to T ⇐⇒ F ⊇ N(s).

As we have seen in Lemma 2.19, T defines a convergence class C for X in net form and, by
means of Lemma 2.17, the induced topologies of C and C ′ coincide and, hence, are equal to
T . Furthermore, C has the property

(S, s) ∈ C ⇐⇒ there is a net S : D → X in X such that Sn → s with respect to T .

Once again Lemma 2.25 holds. In addition, we have the following result.
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2.26 Lemma Let X, C, C ′ and T be defined as above. Then we have (S, s) ∈ C iff there exists
(F , s) ∈ C ′ such that S is a subnet of T , where DF = {(x, F ) |x ∈ F ∈ F} and T is the net
T : DF → X defined by T (x, F ) = x.

Proof. For the necessity, let (S, s) ∈ C, so that S : D → X is a net with Sn → s in the
topology T . Let Bn = {Sm |m ≥ n}, and let B = {Bn |n ∈ D} be the base for the filter
F generated by the net S. Using Theorem 2.1 (b), we see that F → s with respect to
T . Thus, we conclude that (F , s) ∈ C ′. Let DF and T be as defined in our claim, and let
ϕ : D → DF be defined by ϕ(n) = (Sn, Bn) for all n ∈ D. Then, for all n,m ∈ D, we have
that n ≤ m implies Bm ⊆ Bn which in turn implies that (Sn, Bn) ≤ (Sm, Bm). So, ϕ is a
monotonic mapping. Since, for all x ∈ F ∈ F , there exists n ∈ D such that F ⊇ Bn, we
obtain (x, F ) ≤ (Sn, Bn) so that the image of ϕ is cofinal in DF . Therefore, T ◦ ϕ is a net
with T (ϕ(n)) = T ((Sn, Bn)) = Sn = S(n), that is, S = T ◦ ϕ. Thus, S is a subnet of T , as
required.

Conversely, let (F , s) ∈ C ′. By definition of C ′, we have F → s with respect to T . Because
T is the net based on F , using Theorem 2.1 (a) we conclude that Tn → s with respect to T .
Since S is a subnet of T , we obtain also that Sn → s with respect to T so that (S, s) ∈ C by
definition of C. �

3 Convergence Classes and VDM

As mentioned in the introduction, the paper falls naturally into two parts. The first of these
is the previous section in which we established a rather satisfactory theory of convergence.
This section constitutes the second part of the paper, and in it we want to apply certain of
the convergence results of the first part to spaces of partial functions and to certain natural
operators that they carry.

We begin by establishing some preliminaries and some notation.

3.1 Preliminaries

By the term monoid, we mean a non-empty set M endowed with a closed and associative
binary operation ∗, called the law of composition or multiplication, which possesses an identity
element u for the composition. There are several monoids of interest here, and two such
examples of particular importance are (P(X),∪, ∅) and (P(X),∩, X), where P(X) again
denotes the power set of X. In the first, the law of composition is the union of sets and the
identity is the empty set; in the second the law of composition is the intersection of sets and
the identity is the whole set X. We say that a monoid (M, ∗, u) is a topological monoid if M
is a topological space and the law of composition ∗ is a continuous function on M ×M , where
M ×M is endowed with the usual product topology determined by the topology on M .

We shall use the term domain (or Scott domain) with the meaning employed in [15],
which is our general reference to this subject. Thus, a domain (D,v,⊥), or simply D when
no confusion is caused, is a consistently complete algebraic complete partial order. We let Dc

denote the set of compact elements of D, and, given x ∈ D, we let approx(x) denote the set
{a ∈ Dc; a v x}. Of course, approx(x) is directed and x = sup approx(x) for each x ∈ D,
where in general sup A denotes the supremum of the directed set A. Any complete partial
order (cpo), and hence any domain, may be endowed with the well-known Scott topology, see
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[2, 15], in which a set O is open if and only if it satisfies: (i) whenever x ∈ O and x v y,
then y ∈ O, and (ii) whenever A is directed and sup A ∈ O, then A ∩O 6= ∅. In the case of a
domain, this topology has a rather simple description in that the collection {↑a; a ∈ Dc} is a
basis for the Scott topology, where ↑x = {y ∈ D; x v y} for any x ∈ D.

One point of notation to which we should draw the attention of the reader is the following.
In Section 2, we followed [7] closely and therefore we used the symbol D for the index set of
nets. From now on, since we are following [15] closely, D will usually denote a domain, and
therefore we will use I or J etc. to indicate index sets for nets and directed sets in general,
and i, j, n,m, α, β etc. to denote elements of these index sets.

It will be useful to record next a couple of elementary facts we will use without further
mention. The first is the well-known formulation of Scott continuity of functions between
domains in terms of order properties, see [15, Proposition 5.2.3]. Let D and E be domains.
Then a function f : D → E is continuous with respect to the Scott topology if and only if it
satisfies the property: whenever A ⊆ D is directed, we have that f [A] is directed in E and
f(sup A) = sup f [A]. And the second concerns cartesian products, see [15, Proposition 2.2.4].
Let D, E and F be complete partial orders. Then a function f : D × E → F is continuous if
and only if f is continuous in each argument.

Of course, the power set P(X) of a non-empty set X is a domain, ordered by set inclusion,
whose compact elements are the finite sets. It is sometimes useful to identify P(X) with the
set of all total functions from X to 2, by means of the characteristic functions of subsets of
X, or with the product Πi∈X 2i of X copies of 2, where 2 denotes the two-element set {0, 1}.
The usual product topology on Πi∈X 2i, when 2 is endowed with the Scott topology, results
in the Scott topology on Πi∈X 2i and hence on P(X). Alternatively, we may endow 2 with
the discrete topology. Then, we will call the resulting topology on P(X), a Cantor topology
since Πi∈X 2i is homeomorphic to the Cantor set in the real line whenever X is denumerable.
This topology also has significance in computing because of its well-known role in domain
theory in relation to sets of maximal elements and universal domains. Moreover, it coincides
with the Lawson topology on P(X) (the Lawson topology is the common refinement of the
Scott topology and the lower topology, see [2]). Finally, it has an important role in logic
programming semantics (see [12]) and in termination of logic programs, see [4]. In the present
work, it turns out to be important in handling the override operator.

We have a simple characterization of net convergence in the Scott topology.

3.1 Proposition Let D be a domain. A net xi → x in the Scott topology on D if and only
if for each a ∈ approx(x) there is an index i0 such that a v xi whenever i0 ≤ i.

Proof. Suppose that xi → x and that a ∈ approx(x). Then ↑ a is a Scott neighbourhood of
x, and xi eventually belongs to ↑a . So certainly there is an i0 with the stated property.

Conversely, suppose that a net (xi) and an element x are given in D and that the stated
condition on elements a ∈ approx(x) holds. Given an arbitrary Scott neighbourhood U of
x, there is a basic neighbourhood ↑ a of x inside U , where a ∈ approx(x). But the stated
condition now simply asserts that there is an i0 such that xi ∈ U whenever i0 ≤ i and therefore
xi → x, as required. �

The following are simple, but useful, technical facts concerning the two topologies we have
been discussing on P(X); the first follows from Proposition 3.1.
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3.2 Proposition (1) In the Scott topology on P(X), a net Ai of sets converges to a set A if
and only if every element of A is eventually an element of Ai.
(2) In the Cantor topology on P(X), a net Ai converges to A iff every element of A is
eventually an element of Ai, and every element of X not in A is eventually not in Ai.

3.3 Example It is worth noting that, in each case, the stated conditions in Proposition 3.1
and in Proposition 3.2 actually define convergence classes generating the corresponding topol-
ogy. Thus, they provide examples of topologies of interest in computing given in these terms.

3.4 Proposition In either the Scott topology or the Cantor topology on P(X), both
(P(X),∪, ∅) and (P(X),∩, X) are topological monoids.

Proof. We show that (P(X),∪, ∅) is a topological monoid in the Cantor topology, the argu-
ments for the other claims being similar.

Suppose that (A, B)i = (Ai, Bi) is a net in P(X) × P(X) converging to (A, B) in the
product of the Cantor topologies on P(X), thus Ai converges to A and Bi converges to B in
P(X). Suppose x ∈ A∪B. If x ∈ A, then, by Proposition 3.2, x is eventually in Ai and hence
x is eventually in Ai ∪ Bi, and similarly if it is the case that x ∈ B. If x 6∈ A ∪ B, then x is
not in A and x is not in B. Hence, by Proposition 3.2 again, x is eventually not in Ai and
is eventually not in Bi, and hence x is eventually not in Ai ∪ Bi. Thus, Ai ∪ Bi converges to
A ∪B, and so ∪ is continuous, as required. �

The following result is proved similarly, and we omit the proof.

3.5 Proposition The mapping comp : P(X) → P(X) determined by taking the complement
of a set and defined by comp(S) = X \S is continuous in the Cantor topology. Indeed, in the
Cantor topology this mapping is a homeomorphism of P(X) onto itself and is an isomorphism
between the topological monoids (P(X),∪, ∅) and (P(X),∩, X).

Since comp is not even monotonic, it is clearly not Scott continuous on (P(X),⊆). It
results from this that the override operator is not Scott continuous.

3.6 Definition Let M be a topological monoid and let D be a domain which is also a
topological space. Then M will be said to act on (the left of) D if there is a continuous
function � : M ×D → D, usually written (m, x) 7→ m� x, with the following properties:
(i) u� x = x for all x ∈ D.
(ii) m1 � (m2 � x) = (m1 ∗m2)� x for all m1, m2 ∈ M and all x ∈ D.
(iii) m� a ∈ Dc for all m ∈ M and all a ∈ Dc.

Given an action of M on D, fixing m ∈ M determines a continuous function x 7→ m� x
of D to itself which preserves the compact elements. Similarly, fixing x ∈ D determines a
continuous function m 7→ m� x from M to D.

3.2 The Basic Operators in VDM and in VDM♣

Let X and Y be sets, and let (X → Y ) denote the set of partial functions mapping X to Y .
It is well-known that (X → Y ) is a domain when ordered by graph inclusion: µ v ν if and
only if graph(µ) ⊆ graph(ν), where graph(µ) = {(x, y) ∈ X × Y ; x ∈ dom(µ) and y = µ(x)},
and here and elsewhere dom(µ) denotes the domain of µ. Moreover, if A = {µα; α ∈ I} is a
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directed set of elements of (X → Y ), then the supremum of A is the partial function well-
defined by the union of the graphs of the µα, α ∈ I. Finally, the compact elements of (X → Y )
are the partial functions µ for which graph(µ) is a finite set. We shall always suppose that
(X → Y ) is ordered in the way just described. However, we will need to endow (X → Y ) with
topologies other than the Scott topology, as well as with the Scott topology, in what follows.
At any given time, unless stated otherwise, subsets of (X → Y )× (X → Y ) will be given the
subspace topology of the product with itself of whatever topology we are considering at that
time on (X → Y ).

For convenience, we state next a simple criterion for convergence in the Scott topology on
(X → Y ) which follows immediately from Proposition 3.1.

3.7 Proposition A net µi converges to µ in the Scott topology on (X → Y ) iff whenever
(x, y) ∈ graph(µ) we have (x, y) ∈ graph(µi) eventually.

The operators which occur in VDM♣ are operators defined on (X → Y ). As already
noted, it is our aim to study them from the domain-theoretic point of view and to determine
the extent to which they are Scott continuous or otherwise. In fact, we work rather more
generally than this since we formulate the results in terms of (continuous) actions of monoids
on (X → Y ), and obtain the results relative to the usual operators in VDM♣ by fixing one or
other of the arguments. It will be convenient to break the discussion into two parts, namely,
into those which are Scott continuous, and those which are not. For general references to the
details of the operator calculus used in VDM♣, we cite [9, 6]. In fact, the basic operators we
study here are common to both VDM and VDM♣.

3.3 Scott-Continuous Operators

In this subsection, the term “continuous” will mean Scott continuous unless otherwise stated.

3.3.1 The Extension Operator, t

Let µ and ν be elements of (X → Y ) which satisfy dom(µ) ∩ dom(ν) = ∅. We define the
extension µ t ν ∈ (X → Y ) of µ by ν as follows:

(µ t ν)(x) =

{
µ(x) if x ∈ dom(µ),
ν(x) if x ∈ dom(ν).

3.8 Theorem The mapping (µ, ν) 7→ µ t ν is Scott continuous as a mapping on the set
(X → Y )×t (X → Y ) of those pairs (µ, ν) in (X → Y )× (X → Y ) which satisfy dom(µ) ∩
dom(ν) = ∅.

Proof. We begin by showing that (X → Y )×t (X → Y ) is a subdomain of (X → Y )× (X →
Y ). Let A = {(µα, να); α ∈ I} be a directed set in (X → Y )×t (X → Y ). Then A is directed
as a subset of (X → Y ) × (X → Y ). Hence, π0[A] and π1[A] are directed sets in (X → Y ),
where π0 and π1 are the projections on the first and second factors respectively. Moreover, the
supremum of A in (X → Y )×(X → Y ) is the pair (sup π0[A], sup π1[A]), see [15, Lemma 2.2.2].
We show that this pair belongs to (X → Y )×t (X → Y ) and hence that it is the supremum of
A in (X → Y )×t (X → Y ). Suppose that dom(sup π0[A])∩dom(sup π1[A]) 6= ∅, and that x is
an element of this non-empty set. Then there are α and β in I such that (sup π0[A])(x) = µα(x)
and (sup π1[A])(x) = νβ(x). Since A is directed, there is γ ∈ I with (µα, να) v (µγ, νγ)
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and (µβ, νβ) v (µγ, νγ). But this leads to the conclusion that (sup π0[A])(x) = µγ(x) and
(sup π1[A])(x) = νγ(x) and hence to the contradiction that dom(µγ) ∩ dom(νγ) 6= ∅. Thus, it
now follows that (X → Y )×t (X → Y ) is a subcpo of (X → Y )× (X → Y ) and indeed it is
readily checked that it is in fact a subdomain.

For the stated continuity, it suffices, by symmetry, to check continuity in either argument,
so fix µ and consider the map ν 7→ µtν. If (µ, ν1) and (µ, ν2) are elements of (X → Y )×t(X →
Y ) and ν1 v ν2, then it is easily seen that µ t ν1 v µ t ν2 so that the map in question is
monotonic.

Now suppose that A = {να; α ∈ I} is a directed set in (X → Y ), where dom(µ) ∩
dom(να) = ∅ for all α ∈ I, and let ν = sup A. By the first part of the proof, we know that
dom(µ) ∩ dom(ν) = ∅. If x ∈ dom(µ), then clearly (µ t supα∈I να)(x) = (µ t ν)(x) = µ(x).
On the other hand, (µ t να)(x) = µ(x) for all α and hence (supα∈I(µ t να))(x) = µ(x).
If x ∈ dom(ν), then ν(x) = νβ(x) for some β ∈ I, and so (µ t ν)(x) = ν(x) = νβ(x) =
(µ t νβ)(x) = (supα∈I(µ t να))(x). Thus, µ t supα∈I να = supα∈I(µ t να), and we have the
required continuity. �

3.3.2 The Glueing Operator, ∪

Let µ and ν be elements of (X → Y ) which coincide on the intersection of their domains.
Then µ may be glued to ν to obtain the partial map µ ∪ ν ∈ (X → Y ) defined as follows:

(µ ∪ ν)(x) =

{
µ(x) if x ∈ dom(µ),
ν(x) if x ∈ dom(ν).

3.9 Theorem The mapping (µ, ν) 7→ µ ∪ ν is Scott continuous as a mapping on the set
(X → Y ) ×∪ (X → Y ) of those pairs (µ, ν) in (X → Y ) × (X → Y ) which coincide on the
intersection of their domains.

Proof. The proof of this result is similar to the proof of the previous result, and we omit the
details. �

3.3.3 The Domain Restriction Operator, �

Given µ ∈ (X → Y ) and an element S of P(X), we define the restriction of µ by S to be the
partial function in (X → Y ), denoted by �S µ, which satisfies: (i) dom(�S µ) = S ∩ dom(µ),
and (ii) �S µ coincides with µ on S ∩ dom(µ).

3.10 Theorem Suppose that (X → Y ) is endowed with the Scott topology and that P(X)
is endowed with either (1) the Scott topology, or (2) the Cantor topology. Then in either case,
the mapping � : P(X) × (X → Y ) → (X → Y ) defined by �(S, µ) = �S µ determines an
action of the topological monoid (P(X),∩, X) on the domain (X → Y ).

Proof. That (P(X),∩, X) is a topological monoid in either case was shown in Proposition 3.4.
If S1 and S2 are elements of P(X) and µ ∈ (X → Y ), then S1 ∩ (S2 ∩ dom(µ)) = (S1 ∩ S2) ∩
dom(µ), and it follows that (ii) of Definition 3.6 is satisfied. The other two statements in this
definition are clear, and so the result will follow as soon as we have established the required
continuity.
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(1) For this case, it suffices to check continuity in each argument separately.
Fix µ and consider the mapping θ : P(X) → (X → Y ) defined by θ(S) = �S µ.

If S1 ⊆ S2, then graph(�S1 µ) ⊆ graph(�S2 µ), and so θ is monotonic. Suppose that
A = {Sα; α ∈ I} is a directed family of sets in P(X) and let S = sup A =

⋃
α∈ISα.

We want to establish that �⋃
α∈ISα µ = supα∈I(�Sα µ), for which it suffices to show that

graph(�⋃
α∈ISα µ) =

⋃
α∈I graph(�Sα µ) and this is a straightforward calculation.

Now fix S and consider the mapping φ : (X → Y ) → (X → Y ) defined by φ(µ) = �S µ.
If µ1 v µ2, that is, graph(µ1) ⊆ graph(µ2), then it is clear that graph(�S µ1) ⊆ graph(�S µ2)
so that φ is monotonic. Suppose that A = {µα; α ∈ I} is a directed set in (X → Y ), and let
µ = sup A. We want to show that �S µ = supα∈I(�S µα), and again it is a straightforward
calculation to show that graph(�S µ) =

⋃
α∈I graph(�S µα), which suffices.

(2) Suppose that the net (Si, µi) → (S, µ) in the product space P(X) × (X → Y ), where
P(X) carries the Cantor topology. Then we have Si → S in P(X) and µi → µ in (X → Y ).
We want to show that �Si

µi → �S µ in the Scott topology on (X → Y ). Suppose that
ν ∈ approx(�S µ) is arbitrary. By Proposition 3.1, it suffices to show that there is an index i0
such that ν v �Si

µi whenever i0 ≤ i or, equivalently, that graph(ν) ⊆ graph(�Si
µi) whenever

i0 ≤ i. Since ν ∈ approx(�S µ), we have graph(ν) ⊆ graph(�S µ) and hence dom(ν) ⊆
dom(�S µ) from which we obtain that dom(ν) ⊆ S. But ν is a finite function, so that dom(ν)
is a finite set, and Si → S in the Cantor topology. Therefore, by applying Proposition 3.2 (2)
as many times as there are elements in dom(ν), we see that there exists an index i1 such that
dom(ν) ⊆ Si whenever i1 ≤ i.

Next, we note that ν v �S µ v µ and so ν ∈ approx(µ). Since µi → µ in the Scott topology,
by Proposition 3.1 there is an index i2 such that ν v µi whenever i2 ≤ i. Choose an index i0
such that i1 ≤ i0 and i2 ≤ i0. Then, whenever i0 ≤ i, we have graph(ν) ⊆ graph(µi) and hence
dom(ν) ⊆ dom(µi). Since we also have dom(ν) ⊆ Si, we obtain dom(ν) ⊆ Si ∩ dom(µi) and
hence we obtain finally that graph(ν) ⊆ graph(�Si

µi), or that ν v �Si
µi, whenever i0 ≤ i,

as required. �

Notice that either part of this result implies that if we fix the set S, then the map (X →
Y ) → (X → Y ) defined by µ 7→ �S µ is Scott continuous, and it is this map which is normally
understood in the context of domain restriction within VDM♣.

3.4 Non-Scott-Continuous Operators

3.4.1 The Domain Removal Operator, �−

Given µ ∈ (X → Y ) and an element S of P(X), we define the removal from µ of S to be the
partial function in (X → Y ), denoted by �−S µ, which satisfies: (i) dom(�−S µ) = dom(µ) \ S,
and (ii) �−S µ coincides with µ on dom(µ) \ S.

Thus, we now obtain a mapping �− : P(X) × (X → Y ) → (X → Y ) defined by �−
(S, µ) = �−S µ. Moreover, if S1 and S2 are elements of P(X) and µ ∈ (X → Y ), then
(dom(µ) \ S2) \ S1 = dom(µ) \ (S1 ∪ S2). Thus, (ii) of Definition 3.6 is satisfied, and (i) and
(iii) also, relative to the monoid (P(X),∪, ∅). Thus, algebraically, the mapping �− determines
an action of the monoid (P(X),∪, ∅) on (X → Y ). However, this mapping clearly cannot
be continuous when the Scott topology is placed on P(X) and on (X → Y ), since for fixed
µ the map P(X) → (X → Y ): S 7→ �−(S, µ) is not even monotone, although it is clearly
anti-monotone.
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However, we note that for any S ∈ P(X) and any µ ∈ (X → Y ), we have the identity
�−(S, µ) = �(X \S, µ) = �(comp(S), µ), so that �−S µ = �X\S µ. Since comp is an isomorphism
of topological monoids by Proposition 3.5, it transforms the action of �− into an action of �,
and we immediately obtain from Theorem 3.10 the following result.

3.11 Theorem Suppose that P(X) is endowed with the Cantor topology and that (X → Y )
is endowed with the Scott topology. Then the mapping �− : P(X) × (X → Y ) → (X → Y )
defined by �− (S, µ) = �−S µ determines an action of the topological monoid (P(X),∪, ∅) on
the domain (X → Y ).

Thus, for any fixed S, the mapping (X → Y ) → (X → Y ) : µ 7→ �−S µ is Scott
continuous, and it is this map which is normally understood in the context of domain removal
within VDM♣. Nevertheless, we have decided to discuss �− in this subsection, rather than in
the previous one, because, for any fixed µ, the mapping P(X) → (X → Y ): S 7→ �−(S, µ) is
not continuous when P(X) and (X → Y ) both carry the Scott topology, as already noted,
although it is when P(X) carries the Cantor topology.

3.4.2 The Override Operator, †

Given µ, ν ∈ (X → Y ), we define the partial map µ † ν ∈ (X → Y ), called the override of µ
by ν, as follows:

(µ † ν)(x) =

{
ν(x) if x ∈ dom(ν),
µ(x) if x ∈ dom(µ) \ dom(ν).

Thus, we obtain a mapping † : (X → Y )×(X → Y ) → (X → Y ) defined by †(µ, ν) = µ†ν.
Fixing the second argument ν, the mapping µ 7→ µ†ν can easily be seen to be Scott continuous
by the methods we have been using thus far, and we omit the details. However, if we fix the
first argument µ, and consider the mapping ν 7→ µ † ν, it is easy to see that this mapping
is not monotonic and hence is not Scott continuous. This has the consequence that † is not
Scott continuous on (X → Y )× (X → Y ). In fact, † does have certain continuity properties
involving both the Cantor and Scott topologies which become apparent when one considers the
canonical decomposition of µ†ν given below. Nevertheless, a satisfactory treatment of override
appears to require a topology which suitably refines both the Scott and Cantor topologies,
and we intend to introduce a satisfactory candidate for this shortly. However, before doing
this we first establish the following result.

3.12 Proposition In the Scott topologies on (X → Y ) and on P(X), the mapping dom :
(X → Y ) → P(X) defined by µ 7→ dom(µ) is continuous.

Proof. If µ1 v µ2, that is, graph(µ1) ⊆ graph(µ2), then dom(µ1) ⊆ dom(µ2) and so dom is
monotonic. Suppose that A = {µα; α ∈ I} is a directed set in (X → Y ), and let µ = supα∈I µα.
We must show that dom(µ) = dom(supα∈I µα) =

⋃
α∈Idom(µα). But µ is the partial function

determined by the union of the graphs of the partial functions µα, and so the required equality
is easily established, and dom is continuous. �

However, dom is not continuous if the Scott topology on P(X) is replaced by the Cantor
topology. To see this, take Y to be the set of natural numbers, and take a net Ai which
converges to A, say, in the Scott topology on P(X) but does not converge in the Cantor
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topology. Define µi ∈ (X → Y ) by setting µi(x) to be equal to 1 for all x ∈ Ai and is
otherwise undefined. Similarly, define µ ∈ (X → Y ) by setting µ(x) to be equal to 1 for all
x ∈ A and is otherwise undefined. Then dom(µi) = Ai 6→ A = dom(µ) in the Cantor topology.
However, it is a simple application of Proposition 3.1 and of the ideas used in the proof of (2)
of Theorem 3.10 to see that µi → µ in the Scott topology on (X → Y ) so that dom is not
continuous. This fact is unfortunate and has significant bearing on subsequent developments.

Using the operators we have introduced so far, we can represent µ † ν by means of the
equality µ † ν = �− dom(ν) µ t ν. This representation allows us to canonically decompose µ † ν
into a composite of three mappings, in the following way.
(1) The first of the factors is the mapping (X → Y )× (X → Y ) → P(X)× (X → Y )× (X →
Y ) : (µ, ν) 7→ (dom(ν), µ, ν). Up to a reordering of the components, this mapping is the
product [dom, Id]× Id, where Id denotes the identity map.
(2) The second factor is the mapping P(X) × (X → Y ) × (X → Y ) → (X → Y ) × (X →
Y ) : (dom(ν), µ, ν) 7→ (�− dom(ν) µ, ν), and is the product �−×Id.
(3) The third factor is the mapping (X → Y ) × (X → Y ) → (X → Y ) : (�− dom(ν) µ, ν) 7→
�− dom(ν) µ t ν and is the mapping t.

Thus, in addition to the comments already made about the topology we wish to place on
(X → Y ), it is clear that if such a topology makes each of the mappings above continuous,
then it will make the override operator continuous. If we give (X → Y ) the Scott topology,
then the first of these mappings is continuous provided P(X) carries the Scott topology by
Proposition 3.12, but not if P(X) carries the Cantor topology. On the other hand, the second
of the factors in the decomposition above is continuous if P(X) carries the Cantor topology
by Theorem 3.11, but not if it carries the Scott topology. The way forward appears to be to
provide (X → Y ) with a suitable topology which makes both dom and �− continuous when
P(X) carries the Cantor topology.

One possible candidate for a suitable topology on (X → Y ) which springs to mind is the
Lawson topology, much studied in the context of complete and continuous lattices, see [2].
As already noted, this topology is the common refinement of the Scott and lower topologies
and therefore has some computational significance. Moreover, it is compact Hausdorff, at
least in the case of continuous lattices, see [2, III.1.10]. To define this topology, one takes
as basic open sets the sets U\ ↑ F , where U is Scott open, F is a finite set and, of course,
↑F = {y; f v y for some f ∈ F}. As a topology on (X → Y ), the Lawson topology appears,
unfortunately, not to be satisfactory for our purposes. For one thing, it turns out that dom
is not continuous in this topology when P(X) has the Cantor topology, as we will see later.
For another, related, reason it does not seem to be possible to formulate easily in these terms
when a partial function µ is undefined at a point x, say. To say this, one would like to say
µ ∈ U\↑{[x → y]; y ∈ Y }, where U is some Scott open set and [x → y] denotes the maplet,
or partial function, whose value at x is y and is otherwise undefined. Unfortunately, the set
U\↑{[x → y]; y ∈ Y } is not necessarily open in the Lawson topology if Y is infinite.

To solve this problem, we define a topology by means of convergence classes as described
in Section 2. Thus, let C denote the set of all pairs (µi, µ), where µi is a net in (X → Y ) and
µ is an element of (X → Y ), which satisfy the following condition: (µi, µ) ∈ C iff
(i) whenever x ∈ dom(µ), eventually (x, µ(x)) ∈ graph(µi), and
(ii) whenever x 6∈ dom(µ), eventually x 6∈ dom(µi).

Thus, µi converges (C) to µ or limi µi ≡ µ (C) iff the conditions (i) and (ii) are satisfied.
We show next that the conditions above define a convergence class.
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3.13 Theorem The condition µi converges (C) to µ or limi µi ≡ µ (C) iff:
(i) whenever x ∈ dom(µ), eventually (x, µ(x)) ∈ graph(µi), and
(ii) whenever x 6∈ dom(µ), eventually x 6∈ dom(µi)
determines a convergence class on (X → Y ).

Proof. We must check that the four conditions of Definition 2.11 are satisfied.
(a) If µi is a constant net with value µ, it is clear that µi converges (C) to µ.
(b) Suppose that (µi)i∈I converges (C) to µ and that (νj)j∈J is a subnet of (µi)i∈I deter-

mined by the function ϕ : J → I. Thus, for each j ∈ J , we have νj = µϕ(j), and for each
i0 ∈ I there is j0 ∈ J such that whenever p ≥ j0 in J we have ϕ(p) ≥ i0 in I. Suppose
that x ∈ dom(µ). Then there is i0 ∈ I such that (x, µ(x)) ∈ graph(µi) whenever i ≥ i0.
Choose the corresponding j0 as above, and suppose that p ≥ j0. Then ϕ(p) ≥ i0. Thus,
graph(νp) = graph(µϕ(p)). But ϕ(p) ≥ i0, and therefore (x, µ(x)) ∈ graph(µϕ(p)). Hence,
(x, µ(x)) ∈ graph(νp) and so eventually (x, µ(x)) ∈ graph(νj).

Now suppose that x 6∈ dom(µ). Then there is i0 ∈ I such that whenever i ≥ i0, we have
x 6∈ dom(µi). Choose j0 as above in the properties defining a subnet, and suppose that p ≥ j0.
Then ϕ(p) ≥ i0. Thus, dom(νp) = dom(µϕ(p)) and hence x 6∈ dom(νp). Thus, eventually
x 6∈ dom(νj), as required. Consequently, νj converges (C) to µ.

(c) Suppose that (µi)i∈I does not converge (C) to µ. Then one or other of the defining
conditions for convergence (C) is violated. Suppose that the first is violated. Thus, there is an
x ∈ dom(µ) such that (x, µ(x)) is frequently not in graph(µi). In other words, there is a cofinal
subset J of I such that (x, µ(x)) 6∈ graph(µi) whenever i ∈ J . Clearly (µi)i∈J determines a
subnet of (µi)i∈I , in the usual way, no subnet of which converges (C) to µ.

If the second defining condition of convergence (C) is violated, we proceed similarly, and
hence the third requirement, (c), is satisfied.

(d) Suppose that I is a directed set, let Jm be a directed set for each m ∈ I and let F
be the product directed set I ×

∏
m∈IJm. Let r : F → I ×I

⋃
m∈IJm be defined by r(m, f) =

(m, f(m)). Now suppose that µ(m, n) ∈ (X → Y ) for all m ∈ I, n ∈ Jm, and suppose that
limm limn µ(m, n) ≡ ν (C), where ν ∈ (X → Y ). We must show that µ ◦ r converges (C) to ν.

Let x ∈ dom(ν). We must find (m, f) ∈ F such that if (p, g) ≥ (m, f) in F , then (x, ν(x)) ∈
graph(µ ◦ r(p, g)). Choose m ∈ I so that (x, ν(x)) ∈ graph(limn µ(p, n)) for each p ≥ m. Now,
(x, ν(x)) ∈ graph(limn µ(p, n)) means that x ∈ dom(limn µ(p, n)) and (limn µ(p, n))(x) =
ν(x), and moreover µ(p, n) converges (C) to limn µ(p, n) (for fixed p, and varying n). Therefore,
for each p ≥ m we can choose f(p) ∈ Jp such that (x, limn µ(p, n)(x)) ∈ graph(µ(p, n))
whenever n ≥ f(p) in Jp. Thus, (x, ν(x)) ∈ graph(µ(p, n)) for all n ≥ f(p) in Jp. If p is a
member of I which does not follow m in I (i.e. m 6≤ p), then let f(p) be an arbitrary member
of Jp, so that f is now everywhere defined. Now, if (p, g) ≥ (m, f) in F , then p ≥ m so
that (x, ν(x)) ∈ graph(limn µ(p, n)) and since g(p) ≥ f(p) we have (limn µ(p, n))(x) = ν(x).
Hence, (x, ν(x)) ∈ graph(µ(p, g(p))), that is, (x, ν(x)) ∈ graph(µ ◦ r(p, g)). Thus, (x, ν(x)) is
eventually in graph(µ ◦ r(p, g)), as required.

Now suppose that x 6∈ dom(ν). Again, we must find (m, f) ∈ F such that if (p, g) ≥ (m, f),
then x 6∈ dom(µ ◦ r(p, g)). Choose m ∈ I such that x 6∈ dom(limn µ(p, n)) for each p ≥ m.
Since µ(p, n) converges (C) to limn µ(p, n) (for fixed p, and varying n), for each p ≥ m we
can choose f(p) ∈ Jp such that x 6∈ dom(µ(p, n)) whenever n ≥ f(p). If p is a member of I
which does not follow m, then again let f(p) be arbitrary in Jp. Now, if (p, g) ≥ (m, f), then
p ≥ m and hence x 6∈ dom(limn µ(p, n)) and hence x 6∈ dom(µ(p, g(p)) since g(p) ≥ f(p). So,
x 6∈ dom(µ ◦ r(p, g)), as required.
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Thus, µ ◦ r converges (C) to ν, and the proof is complete. �

This theorem results in a topology on (X → Y ) which we will refer to as the strong Cantor
topology, and the following remarks will explain why this name has been chosen.

3.14 Remark
(1) The conditions specifying convergence (C) in Theorem 3.13 are easily seen to be equivalent
to the following:
(a) whenever (x, y) ∈ graph(µ), eventually (x, y) ∈ graph(µi),
(b) whenever x 6∈ dom(µ), eventually x 6∈ dom(µi), and
(c) whenever x ∈ dom(µ) and (x, y) 6∈ graph(µ), then eventually x ∈ dom(µi) and (x, y) 6∈
graph(µi).
(2) Any partial function in (X → Y ) may be identified with its graph and hence with a
subset of X × Y , so that we have a natural inclusion (X → Y ) ⊆ P(X × Y ) inside the
power set of X × Y . Thus, any convergence class respectively topology on P(X × Y ) induces
a convergence class respectively topology on (X → Y ). There are three such related to the
present discussion:
(i) Convergence of a net Ai to A in P(X×Y ) specified by “whenever (x, y) ∈ A we eventually
have (x, y) ∈ Ai”. By Example 3.3 and Proposition 3.1 this induces the Scott topology on
P(X × Y ) and, as a subspace, induces the Scott topology on (X → Y ), see Proposition 3.7.
(ii) Convergence of a net Ai to A in P(X×Y ) specified by “whenever (x, y) ∈ A we eventually
have (x, y) ∈ Ai, and whenever (x, y) 6∈ A we eventually have (x, y) 6∈ Ai”. By Example 3.3,
we obtain the Cantor topology on P(X × Y ). We shall refer to the induced topology on
(X → Y ) in this case as the Cantor topology on (X → Y ). Of course, as far as (X → Y )
is concerned, a net µi converges to µ in the Cantor topology iff whenever (x, y) ∈ graph(µ)
we eventually have (x, y) ∈ graph(µi), and whenever (x, y) 6∈ graph(µ) we eventually have
(x, y) 6∈ graph(µi).
(iii) Thinking of a subset A of X × Y as a relation from X to Y , we define the domain of A,
dom(A), to be the set {x ∈ X; (x, y) ∈ A for some y ∈ Y }. We can therefore generalize the
conditions stated in (1), and hence those stated in Theorem 3.13, by specifying convergence
of Ai to A in P(X × Y ) to mean:
(a)′ whenever (x, y) ∈ A, eventually (x, y) ∈ Ai,
(b)′ whenever x 6∈ dom(A), eventually x 6∈ dom(Ai), and
(c)′ whenever x ∈ dom(A) and (x, y) 6∈ A, then eventually x ∈ dom(Ai) and (x, y) 6∈ Ai.
Following the proof of Theorem 3.13, it can be shown that this notion of convergence also
defines a convergence class. Of course, the topology it induces on (X → Y ) is the strong
Cantor topology.
(3) It follows easily from the previous remark (1) that the convergence just defined, namely
(2) (iii), implies that in (2) (ii) so that the strong Cantor topology is a refinement of the
Cantor topology, and hence the name “strong Cantor topology”.

We next collect together some basic facts about the topologies we have been discussing.

3.15 Proposition The following facts hold.
(1) The strong Cantor topology is a refinement of the Cantor topology which in turn is a
refinement of the Scott topology.
(2) The set (X → Y ) is closed in P(X × Y ) in each of the three topologies on P(X × Y )
discussed in Remark 3.14.
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(3) The space (X → Y ) is compact and T0 in the Scott topology.
(4) The space (X → Y ) is compact Hausdorff in the Cantor topology.
(5) The space (X → Y ) is Hausdorff in the strong Cantor topology and is compact iff the
Cantor and strong Cantor topologies coincide.
(6) In general, the Cantor and strong Cantor topologies do not coincide, and therefore the
strong Cantor topology is not generally compact.
(7) The strong Cantor topology is not trivial, that is, it is not the discrete topology.
(8) The space Y X of all total functions mapping X into Y is not a closed subset of (X → Y )
in the Scott and Cantor topologies, but is closed in the strong Cantor topology. In each of the
three topologies in question, the induced topology on Y X is not trivial, that is, is not discrete.
(9) The strong Cantor and Cantor topologies coincide on the set Y X of all total functions in
(X → Y ).

Proof. (1) By Remark 3.14, the net convergence condition describing the strong Cantor
topology is more restrictive than that describing the Cantor topology which in turn is more
restrictive than that describing the Scott topology, and this observation suffices.
(2) Let Ai be a net of sets in P(X × Y ), each element of which is the graph of a partial
function in (X → Y ) and suppose that A ∈ P(X × Y ). By Remark 3.14, if Ai converges
to A in any of the topologies in question, at least the following condition holds: whenever
(x, y) ∈ A, eventually (x, y) ∈ Ai. Thus, if (x, y′) is also an element of A, then eventually it
too is an element of Ai. But then it is immediate that y = y′ and hence that A is the graph
of a partial function in (X → Y ), as required.
(3) This is a well-known general fact about the Scott topology.
(4) The space P(X × Y ) is compact and Hausdorff in the Cantor topology. Hence, (X → Y )
is also Hausdorff and, being closed by (2), is also compact.
(5) Since the strong Cantor topology is a refinement of the Cantor topology, it also is Hausdorff
and so therefore is (X → Y ) in this topology. If the Cantor and strong Cantor topologies
agree, then obviously (X → Y ) is also compact in the strong Cantor topology, by (2) and
(4). On the other hand, if (X → Y ) is compact in the strong Cantor topology, then the
identity map regarded as a map from this space to (X → Y ) with the Cantor topology is a
one-to-one continuous mapping from a compact space onto a Hausdorff space, and therefore
is a homeomorphism.
(6) Consider the partial functions (N → N) from the set of natural numbers to itself. Define
µ by setting µ(x) = 1 if x is even, and taking µ to be undefined otherwise. For each n ∈ N,
define µn as follows: µn(x) = 1 if x is even and x ≤ n; µn(x) = n if x is odd and x ≤ n; µn(x)
is undefined if x > n. Then µn does not converge to µ in the strong Cantor topology because
dom(µn) does not converge to dom(µ) in the Cantor topology on P(X), see Proposition 3.16
below. Yet µn does converge to µ in the Cantor topology. Thus, the Cantor and strong Cantor
topologies are different in this case, and hence by the previous result (5) the space (X → Y )
is not compact in the latter topology.
(7) Again consider (N → N). Take µ as defined in (6). This time, for each natural number
n, define µn by setting µn(x) = 1 if x is even and x ≤ n, and taking µn to be undefined
otherwise. Then the sequence (µn)n is not eventually constant and yet converges to µ in the
strong Cantor topology.
(8) Take µ and µn as defined in (6) except that we now set µn(x) = 0 if x > n, so that each
of the µn is a total function. Again, µn does not converge to µ in the strong Cantor topology,
but does so in the Scott and Cantor topologies. Since µ is not total, it follows that Y X is not
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closed in (X → Y ) in the Scott and Cantor topologies. On the other hand, if µn converges to
µ in the strong Cantor topology and each of the µn is total, then so is µ by Proposition 3.16,
and hence Y X is closed in this case. Finally, take (N → N) again, define µ by setting µ(x) = 1
for all x and define µn by setting µn(x) = 1 if 0 ≤ x ≤ n and setting µn(x) = 0 otherwise; so
that µ and each µn are total. Then µn → µ in the strong Cantor topology, and yet (µn)n is
not eventually constant, and so the induced topology on Y X is not discrete.
(9) Let µi and µ be total functions in (X → Y ). If µi → µ in the strong Cantor topology,
then certainly µi → µ in the Cantor topology by (1). Conversely, suppose that µi → µ in
the Cantor topology. Let x ∈ dom(µ). Then (x, µ(x)) ∈ graph(µ) and so, by our current
assumption, we have that (x, µ(x)) ∈ graph(µi) eventually. The second convergence condition
defining the strong Cantor topology is trivially satisfied in this case, and the result follows. �

Notice that (9) of Proposition 3.15 applies in particular when Y is the two-element set.
Therefore, the strong Cantor and Cantor topologies coincide on the power set P(X). We will,
however, persist in what follows in referring to the Cantor topology on P(X), rather than
using the all-embracing term “strong Cantor topology”.

We now proceed with our treatment of the override operator armed with the results that
we have established at our disposal. We start with the following simple, but important, fact.

3.16 Proposition If µi converges to µ in the strong Cantor topology, then dom(µi) converges
to dom(µ) in the Cantor topology on P(X). Hence, the map dom is continuous when (X → Y )
is endowed with the strong Cantor topology and P(X) is endowed with the Cantor topology.

Proof. Suppose that µi → µ in the strong Cantor topology. Let x ∈ dom(µ). Then eventually
(x, µ(x)) ∈ graph(µi) and hence eventually x ∈ dom(µi). On the other hand, if x 6∈ dom(µ),
then eventually x 6∈ dom(µi). Thus, dom(µi) → dom(µ) in the Cantor topology on P(X), as
required. �

3.17 Remark
(1) The examples in (6) and (8) of Proposition 3.15 show that the function dom is not contin-
uous when (X → Y ) and P(X) both have the Cantor topologies, so that the Cantor topology
on (X → Y ) is not entirely satisfactory. Since the Lawson topology on P(X × Y ) coincides
with the Cantor topology, the Lawson topology is also not entirely satisfactory in this context.
(2) These comments raise the general question “Just what is a reasonable notion of conver-
gence in (X → Y )?”, the answer depending of course on the ultimate applications. In subjects
like functional analysis, for example, convergence is often uniform (supx ||f(x)− fn(x)|| → 0
as n →∞ in some norm || · ||) or uniform convergence on compacta etc. These notions are in-
tuitively very reasonable and do indeed capture the notion of the function fn tending towards
the function f . However, the price one pays for this is relatively few convergent sequences (or
nets), hence relatively many open sets, hence the underlying topology is highly non-compact,
usually. By comparison, convergence in (X → Y ) can be quite bizarre as shown by some
of the examples given in the proof of Proposition 3.15. In fact, convergence of dom(µi) to
dom(µ) as part of one’s definition is quite natural and, intuitively, convergence in the strong
Cantor topology is probably the most reasonable. However, again the price to be paid is
non-compactness in general.

Notwithstanding the remarks just made about non-compactness, it will become apparent
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later that the following result shows that the strong Cantor topology is in many ways the
best possible choice of topology to impose on (X → Y ).

3.18 Proposition The strong Cantor topology is the smallest topology on (X → Y ) which
refines both the Scott topology and the Lawson topology and in which the function dom is
continuous when P(X) is endowed with the Cantor (or Lawson) topology.

Proof. By Proposition 3.15, the strong Cantor topology certainly refines both the Scott topol-
ogy and the Lawson topology, and by Proposition 3.16 satisfies the continuity requirement
concerning dom.

Now suppose T is any topology refining both the topologies mentioned and such that dom
is continuous. Let µi → µ in T . Then µi → µ in the Scott topology. Let x ∈ dom(µ). Then
(x, µ(x)) ∈ graph(µ). Hence, by Proposition 3.7, (x, µ(x)) ∈ graph(µi) eventually. On the
other hand, dom(µi) → dom(µ) in the Cantor topology on P(X). Hence, if x 6∈ dom(µ), then
eventually x 6∈ dom(µi). Thus, µi → µ in the strong Cantor topology, as required. �

3.19 Theorem The mapping � : P(X)× (X → Y ) → (X → Y ) defined by �(S, µ) = �S µ
is continuous when P(X) is endowed with the Cantor topology and (X → Y ) is endowed
with either:
(i) the strong Cantor topology, or
(ii) the Cantor topology.

Proof. We content ourselves by proving the result referring to (i) and leave the details of (ii),
which are similar, to the reader.

Thus, suppose that (Si, µi) → (S, µ) in P(X) × (X → Y ). Thus, Si → S in the Cantor
topology on P(X) and µi → µ in the strong Cantor topology on (X → Y ). We must show
that �Si

µi → �S µ in the strong Cantor topology.
Suppose that x ∈ dom(�S µ). Thus, x ∈ S and x ∈ dom(µ). Since Si → S, we eventually

have x ∈ Si; since µi → µ, we eventually have (x, µ(x)) ∈ graph(µi). Using the directedness of
the index set of the net in question, we can choose the index i0 to get these statements holding
simultaneously beyond i0. Thus, beyond i0 we have x ∈ Si∩dom(µi) and (x, µ(x)) ∈ graph(µi).
Hence, beyond i0 we have µi(x) = µ(x) and hence we have �Si

µi(x) = �S µ(x). Thus,
(x, �S µ(x)) ∈ graph(�Si

µi) beyond i0 and, hence, eventually.
Now suppose that x 6∈ dom(�S µ) = S ∩ dom(µ).

Case 1: x 6∈ S. Since Si → S, eventually x 6∈ Si and hence eventually x 6∈ Si ∩ dom(µi) so
that eventually x 6∈ dom(�Si

µi).
Case 2: x 6∈ dom(µ). Since µi → µ, eventually x 6∈ dom(µi), and hence eventually x 6∈
Si ∩ dom(µi), that is, eventually x 6∈ dom(�Si

µi).
This covers all cases, and so now we see that �Si

µi → �S µ, as required. �

Bearing in mind our earlier comments about comp transforming the action of �− into one
of � and vice versa, we immediately obtain from Theorem 3.19 the following result.

3.20 Theorem The mapping �− : P(X)× (X → Y ) → (X → Y ) defined by �− (S, µ) = �−S µ
is continuous when P(X) is endowed with the Cantor topology and (X → Y ) is endowed
with either:
(i) the strong Cantor topology, or
(ii) the Cantor topology.
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3.21 Theorem The mapping t : (X → Y ) ×t (X → Y ) → (X → Y ) defined by t(µ, ν) =
µ t ν is continuous when (X → Y ) is endowed with either:
(i) the strong Cantor topology, or
(ii) the Cantor topology.

Proof. Again, we prove just the first of these claims and leave the second to the reader.
Let (µi, νi) be a net converging in (X → Y ) ×t (X → Y ) to (µ, ν) relative to the strong

Cantor topology. We must show that µitνi converges in this topology to µtν. Now µi → µ and
νi → ν. Suppose that x ∈ dom(µ t ν) = dom(µ) ∪ dom(ν) and for sake of argument suppose
that x ∈ dom(µ). Then eventually (x, µ(x)) ∈ graph(µi) and hence eventually (x, µ(x)) ∈
graph(µi t νi), since (µi t νi)(x) = µi(x) = µ(x). Similarly, if x ∈ dom(ν).

Now suppose that x 6∈ dom(µtν). Then x 6∈ dom(µ) and x 6∈ dom(ν). Thus, eventually we
simultaneously get x 6∈ dom(µi) and x 6∈ dom(νi). Hence, eventually we get x 6∈ dom(µi t νi),
as required. �

Recalling the canonical decomposition of the override operator and using the results just
established we now obtain the following main result.

3.22 Theorem The mapping † : (X → Y )×(X → Y ) → (X → Y ) defined by †(µ, ν) = µ†ν
is continuous in the strong Cantor topology.

4 Compactness of (X → Y )

To close, we consider the compactness of the space (X → Y ) in the strong Cantor topology.
To do this, let ⊥ be some object not in Y , let Y⊥ denote the set Y ∪ {⊥}, and let ⊥X denote
the constant map on X with value ⊥.

4.1 Proposition For any set Y , the Cantor topology on Y X coincides with the topology of
pointwise convergence, where Y has the discrete topology.

Proof. Suppose that fi → f in the Cantor topology on Y X , and that f(x) = y. Then
(x, y) ∈ graph(f) and hence eventually (x, y) ∈ graph(fi). Thus, eventually fi(x) = y and so
fi(x) converges to y in the discrete topology on Y . Conversely, suppose that fi → f in the
topology of pointwise convergence, where Y has the discrete topology. If (x, y) ∈ graph(f),
then f(x) = y and so eventually fi(x) = y, that is, eventually (x, y) ∈ graph(fi). Now suppose
that (x, y) 6∈ graph(f). Then f(x) 6= y, and so eventually fi(x) 6= y and consequently we have
eventually that (x, y) 6∈ graph(fi). Hence, fi → f in the Cantor topology on Y X . �

Let t : (X → Y ) → Y⊥ be the mapping defined by t(µ) = ⊥X †µ, and let p be the mapping
p : Y⊥ → (X → Y ), where p(f) = f ′ is the partial map f ′ obtained by the removal from
the total map f of the set S of all those x ∈ X such that f(x) = ⊥. These mappings are
bijections and each is the inverse of the other. Indeed, in the strong Cantor topology each is
a homeomorphism as we see in the proof of the following result.

4.2 Proposition The space (X → Y ) is compact in the strong Cantor topology if and only
if Y is finite.
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Proof. When endowed with the strong Cantor topology, both (Y⊥)X and (X → Y ) are
subspaces of (X → Y⊥) in the strong Cantor topology. Therefore, on fixing the first factor of
† at ⊥X in Theorem 3.22, we see that t is continuous in the strong Cantor topology.

The map p is also continuous in the strong Cantor topology, as we now show. Suppose that
fi → f in the strong Cantor topology on (Y⊥)X . Let x ∈ dom(f ′), so that f ′(x) = f(x) 6= ⊥.
Since fi → f , we have (x, f(x)) eventually in graph(fi). Thus, eventually fi(x) = f(x) 6= ⊥.
So, eventually f ′i(x) = f ′(x) 6= ⊥, that is, eventually (x, f ′(x)) ∈ graph(f ′i). Now suppose
that x 6∈ dom(f ′). This means that f(x) = ⊥. Since fi → f , eventually (x, f(x)) ∈ graph(fi)
so that eventually fi(x) = f(x) = ⊥ and hence eventually x 6∈ dom(f ′i). Thus, f ′i → f ′ in the
strong Cantor topology on (X → Y ), as required. Thus, t and p are homeomorphisms.

Suppose now that (X → Y ) is compact in the strong Cantor topology. Then (Y⊥)X is com-
pact in this topology and hence is compact in the Cantor topology by (9) of Proposition 3.15.
But then Y⊥ is finite by Proposition 4.1 and Tychonoff’s theorem, and therefore Y is finite.
Conversely, if Y is finite, then (Y⊥)X is compact in the Cantor topology and hence in the
strong Cantor topology, and therefore (X → Y ) is compact in the strong Cantor topology. �

One can avoid the introduction of the element ⊥, and we briefly consider the following
alternative way of proceeding to obtain the previous result. To do this we must, however,
choose a base point in Y . Having made this choice, u say, we then let uX denote the constant
function on X with value u.

Let p : P(X) × Y X → (X → Y ) be defined by p(S, f) = �S f , noting that no confusion
will be caused by use of the symbol p again. It follows immediately from Theorem 3.19 that
p is continuous when Y X and (X → Y ) have the strong Cantor topology, and P(X) has the
Cantor topology. Furthermore, there is a naturally defined section s : (X → Y ) → P(X)×Y X

of this mapping p, where s(µ) = (dom(µ), uX † µ, ), and s is clearly continuous by virtue of
Proposition 3.16 and the proof of the continuity of t given above.

The mappings p and s determine an endomorphism e = s◦p of the product space P(X)×
Y X to itself which is continuous in the topologies under discussion. Since s is a section of p,
it follows that e is idempotent and so e(S, f) is a fixed point of e for each pair (S, f). Letting
F = fix(e) denote the set of all fixed points of e, we note that F is a closed set in P(X)×Y X ,
as is readily checked. We further note the following facts which are established in [6], see also
[8]: (i) (S, f) ∈ F if and only if f(x) = u for all x ∈ X \ S, and (ii) the restriction p|F of p to
F is an inverse of s.

We can now give an alternative proof of Proposition 4.2, as follows. First, we note that
(X → Y ) and F are homeomorphic (under p|F or s) and F is closed. Therefore, if Y is
finite, it is immediate from Proposition 4.1 that F is compact and hence that (X → Y ) is
compact. Conversely, if (X → Y ) is compact, then F is compact. But (X, f) ∈ F for each
f ∈ Y X . Therefore, the image of F under the projection on the second factor on the product
P(X)× Y X is all of Y X and hence the latter is compact. It follows that Y is finite.

The identification above of (X → Y ) and (Y⊥)X using t and p is the one customarily
used except that we have expressed it in the language of VDM. However, t is not continuous
in the Scott topology nor in the Cantor topology, and this is one of the reasons why the
strong Cantor topology seems to be quite appropriate for carrying out functional calculus on
spaces of partial functions. In addition it gives a smooth treatment of such spaces and their
operators, as shown by the mechanics of the proofs above.
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5 Conclusions and Further Work

The results of the first part of the paper give a very satisfactory development of conver-
gence spaces and convergence classes in terms of both nets and filters. Moreover, we establish
complete duality between the two theories, and present simple conditions under which a con-
vergence space is topological. Specifically, a convergence space (X,S) in net form is topological
iff it is a convergence class in net form iff it satisfies conditions (c) and (d) of Definition 2.11.
Similarly, a convergence space (X,F) in filter form is topological iff it is a convergence class
in filter form iff it satisfies conditions (c) and (d) of Definition 2.14.

The second part shows that in relation to VDM, the Scott topology is not satisfactory:
certain of the standard basic operators encountered there are Scott continuous, others are not.
Overcoming this has necessitated the introduction of (smallest possible) refinements of the
Scott topology such as the strong Cantor topology and then all the basic operators considered
are continuous, giving a satisfactory analysis.

Noting that “constructive” and “effective” are closely related concepts, and that “effec-
tive” and “continuous” are also closely related from the domain-theoretic point of view, it
is of interest to investigate the effectiveness of the operators we have discussed within the
topological framework of this paper. This objective is closely related to the programme being
carried out in [6, 9, 10], where the operators we have considered (particularly the override)
have been studied in [6, 9, 10] from the point of view of topos theory in order to view them
constructively. Thus, one may view the present paper as taking a first step towards examin-
ing the effectiveness of the operators concerned by considering the possibility of constructive
topology within VDM♣ in the spirit of [10]. Indeed, one of our objectives here has been to
provide a “convenient category” in which all the operations considered are automatically con-
tinuous, and the strong Cantor topology essentially does this. However, the full objective of
contributing an appropriate notion of effectiveness within the framework of [10] is ongoing
work of the authors and will be discussed elsewhere.
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