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1 The OWL scalability problem
Knowledge representation and reasoning on the Semantic
Web is done by means of ontologies. While the quest for suit-
able ontology languages is still ongoing, OWL [5] has been
established as a core standard. It comes in three flavours, as
OWL Full, OWL DL and OWL Lite, where OWL Full con-
tains OWL DL, which in turn contains OWL Lite. The lat-
ter two coincide semantically with certain description logics
and can thus be considered fragments of first-order predicate
logic.

OWL ontologies can be understood to consist of two parts,
one intensional, the other extensional. In description log-
ics terminology, the intensional part consists of a TBox and
an RBox, and contains knowledge about concepts (called
classes) and complex relations between them (called roles).
The extensional part consists of an ABox, and contains
knowledge about entities and how they relate to the classes
and roles from the intensional part. The Semantic Web en-
visions a distributed knowledge source, built from OWL on-
tologies and intertwining the knowledge like the Web inter-
connects websites today.

With an estimated 25 million active websites today and cor-
respondingly more webpages, it is apparent that reasoning on
the Semantic Web will have to deal with very large ABoxes.
Complexity of ABox reasoning — also called data complex-
ity — measures complexity in terms of ABox size only, while
considering the intensional part of the ontology to be of con-
stant size. For the different OWL variants, data complexity
is at least NP-hard, which indicates that it will not scale well
in general. Therefore, methods are sought to cope with large
ABoxes in an approximate manner. The idea is to use quick
heuristic reasoning when time constraints are more important
than the correctness of the answers. A typical use case is on-
line question answering, where it is more important to give
rough answers quickly than to have precise responses at the
cost of long delays.
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2 From OWL to datalog
The approach which we propose is based on the fact that
data complexity is polynomial for non-disjunctive datalog.
We utilise recent research results about the transformation
of OWL DL ontologies into disjunctive datalog, and perform
heuristic approximate reasoning by transforming the disjunc-
tive database into a non-disjunctive one.

The transformation is based on the fact that OWL DL
is a subset of first-order logic. OWL axioms can thus be
translated directly into logical formulas and transformed into
clausal form using any of the standard algorithms. The re-
sulting clauses can be represented as disjunctive datalog rules
which do not contain negation.

Note, however, that due to possible skolemization steps in
the clausal form translation, the resulting datalog rules may
contain function symbols. In general, datalog with function
symbols is undecidable, but since we obtain the datalog pro-
gram by a translation from OWL DL, which is decidable,
inferencing over the resulting program must be decidable.
Standard datalog engines, however, do in general not termi-
nate in the presence of function symbols. To cope whith this
problem, a sophisticated method has been presented in [2;
3] which allows to get rid of the function symbols with-
out loosing ABox consequences. As a result, we obtain
a function- and negation-free disjunctive datalog program,
which can be dealt with using standard techniques.

There is one other catch: The approach presented in [2;
3] does not allow to deal with nominals, i.e. it supports only
SHIQ(D) instead of SHOIN (D) (the latter is the descrip-
tion logic coinciding with OWL DL). We remark that to date
— and to the best of our knowledge — no reasoning algo-
rithms for SHOIN (D) have been implemented. We will
return to a possible treatment of nominals in our approach
later.

A full presentation of the translation with correctness
proofs is technically involved and lengthy, and space restric-
tions forbid to go into further detail; we refer the interested
reader to [2; 3].

3 Approximate SLD-Resolution
Having obtained datalog rules of the form

H1 ∨ · · · ∨Hm ← A1, . . . , Ak,



ABox reasoning is still NP-hard. For our approximate rea-
soning approach, we utilize the fact that when all rules are
non-disjunctive, i.e. when m = 1, then standard resolution
methods can be used which render the reasoning to be poly-
nomial with regards to the number of facts. Hence, we use a
modified notion of split programs [6]. Given the above rule,
the derived split rules are defined as:

H1 ← A1, . . . , Ak . . . Hm ← A1, . . . , Ak.

For a given disjunctive program P , its split program P ′ is de-
fined as the collection of all split rules derived from rules in
P . Polynomial ABox reasoning can now be performed using
the split program and classic resolution techniques, e.g. SLD-
resolution as used in standard Prolog systems [4]. The com-
bined reasoning method, which we call approximate SLD-
resolution, is obviously complete but unsound, and hence it
is necessary to pursue the question of exactly what notion
of entailment underlies the approximate reasoning technique
we propose. Space restrictions forbid us to go into detail, so
it shall suffice to say that approximate SLD-resolution boils
down to brave reasoning with well-supported models, where
the latter notion is a straightforward adaptation of the notion
of well-supported model from [1] to the disjunctive case.

In order to be able to deal with all of OWL DL, we need
to add a preprocessing step to get rid of nominals. We can
do this by Language Weakening as follows: For every occur-
rence of {o1, . . . , on}, where n ∈ N and the oi are abstract or
concrete individuals, replace {o1, . . . , on} by some new con-
cept name D, and add ABox assertions D(o1), . . . , D(on) to
the knowledge base. Note that the transformation just given
does in general not yield a logically equivalent knowledge
base, because some information is lost in the process.

Putting all the pieces together, the following steps describe
our approximate ABox reasoning for OWL DL.

1. Apply Language Weakening as just mentioned in order
to obtain a SHIQ(D) knowledge base.

2. Apply transformations as in Section 2 in order to obtain
a negation-free disjunctive datalog program.

3. Use approximate SLD-resolution for query-answering.
The first two steps can be considered to be preprocessing

steps for setting up the intensional part of the database. ABox
reasoning is then done in the last step. From our discus-
sions, we can conclude the following properties of approx-
imate ABox reasoning for SHIQ(D).
• It is complete with respect to first-order predicate logic

semantics.
• It is sound and complete with respect to brave reasoning

with well-supported models.
• Data complexity of our approach is polynomial.

4 SCREECH OWL
We have implemented the proposed approach as SCREECH1,
based on KAON22. It utilizes KAON2’s sophisticated trans-
lation algorithms from OWL DL into datalog, and returns the

1http://logic.aifb.uni-karlsruhe.de/screech
2http://kaon2.semanticweb.org

corresponding split program which can be fed into any stan-
dard Prolog interpreter for ABox reasoning. As an additional
feature, the transformed program allows to keep track of the
number of disjunctions which are being ignored during the
query answering process, thus giving an estimate about the
accuracy of the answers.

5 Conclusions
In a nutshell, our proposed procedure approximates reasoning
by disregarding non-Horn features of OWL DL ontologies.
We argue that this is a reasonable approach to approximate
reasoning with OWL DL in particular because many — if not
most — of the currently existing ontologies use only a small
number of language constructs outside of the Horn fragment
of OWL DL. A survey in [7] substantiates this claim.

Our approach provides ABox reasoning with polynomial
time complexity. It is complete, but it is also unsound with
respect to first-order logic. However, the inference underlying
our approach can be characterized using standard methods
from the area of non-monotonic reasoning.

The checking whether a conjunctive query is a predicate
logic consequence of a (negation-free) disjunctive logic pro-
gram P amounts to checking whether the query is valid in all
minimal models of P , i.e. corresponds to cautious reason-
ing with minimal models. Along this insight, we foresee the
possibility to develop an algorithm which would first find a
brave answer of a query, and then substantiate this answer by
subsequent calculations. This and other refinements of our
approach are in development.
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