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Abstract. Measuring inconsistency in knowledge bases has been recog-
nized as an important problem in several research areas. Many methods
have been proposed to solve this problem and a main class of them is
based on some kind of paraconsistent semantics. However, existing meth-
ods suffer from two limitations: 1) They are mostly restricted to propo-
sitional knowledge bases; 2) Very few of them discuss computational
aspects of computing inconsistency measures. In this paper, we try to
solve these two limitations by exploring algorithms for computing an
inconsistency measure of first-order knowledge bases. After introducing
a four-valued semantics for first-order logic, we define an inconsistency
measure of a first-order knowledge base, which is a sequence of incon-
sistency degrees. We then propose a precise algorithm to compute our
inconsistency measure. We show that this algorithm reduces the com-
putation of the inconsistency measure to classical satisfiability checking.
This is done by introducing a new semantics, named S[n]-4 semantics,
which can be calculated by invoking a classical SAT solver. Moreover,
we show that this auxiliary semantics also gives a direct way to compute
upper and lower bounds of inconsistency degrees. That is, it can be easily
revised to compute approximating inconsistency measures. The approx-
imating inconsistency measures converge to the precise values if enough
resources are available. Finally, by some nice properties of the S[n]-4 se-
mantics, we show that some upper and lower bounds can be computed in
P-time, which says that the problem of computing these approximating
inconsistency measures is tractable.

1 Introduction

Inconsistencies arise naturally when working with logic-based knowledge bases;
they can, e.g., come from the merging of several knowledge bases or from on-
tology learning. However, inconsistencies are obviously undesirable in first-order
knowledge bases. To tackle this problem, two fundamentally different approaches
can be distinguished. The first is based on the assumption that inconsistencies
indicate erroneous data which is to be repaired in order to obtain a consistent
knowledge base, e.g., by selecting consistent subsets for the reasoning process [3,
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6, 10, 11, 19, 27, 29]. The other approach considers inconsistencies as natural phe-
nomena in realistic data which are to be handled by a logic which can tolerate
it [1, 12, 20, 21], such as paraconsistent logic.

Recently, there is an increasing interest in quantifying inconsistency in incon-
sistent knowledge bases. This is because it is not fine-grained enough to simply
say that two inconsistent knowledge bases contain the same amount of incon-
sistency. Indeed, it has been shown that analyzing inconsistency is helpful to
decide how to act on inconsistency [14], i.e. whether to ignore it or to resolve
it. Furthermore, measuring inconsistency in a knowledge base can provide some
context information which can be used to resolve inconsistencies [13, 15, 16], and
proves useful in different scenarios such as Software Engineering [25].

There mainly exist two categories of inconsistency measures. One is defined
by the number of formulae which are responsible for an inconsistency [17, 18]. The
other considers propositions in the language which are affected by inconsistency
[7–9, 13, 14, 26]. The measures belonging to the second class are often based on
some paraconsistent semantics because we can still find paraconsistent models
for inconsistent knowledge bases. The inconsistency measure considered in this
paper belongs to the second class.

Most of the proposed inconsistency measures are restricted to propositional
knowledge bases. However, propositional logic has its limitations in expressive
power. Furthermore, although there exist many approaches to measuring incon-
sistency of a knowledge base in a logical framework, very few of them provide
algorithms for computing inconsistency degrees. In this paper, we consider incon-
sistency measures in first-order logic. Our definition of inconsistency measure,
as a sequence of inconsistency degrees, is similar to the approach given in [8].
The difference is that our approach is based on four-valued semantics and their
approach is based on quasi-classical semantics. Compared with [9], which uses
four-valued semantics to study inconsistency measures, our focus is on algorithms
for computing model-based measures.

The contributions of this paper can be summarized as follows:

– We give a linear reduction from the four-valued first-order semantics to the
classical first-order semantics such that the four-valued entailment of first-
order logic can be computed by a classical first-order reasoner. This way, our
algorithms can benefit from state-of-the-art classical reasoners.

– We present an algorithm to compute inconsistency degrees by invoking a
classical SAT solver. To this end, a new semantics for first-order logic, called
S[n]-4 semantics, is introduced.

– We further show that the S[n]-4 semantics provides a direct way to compute
upper and lower bounds of inconsistency degrees (which we call approximat-
ing inconsistency degrees).

– Since an algorithm which is based on invoking a SAT solver is NP-hard in
general, we further study some favorable properties of the S[n]-4 semantics
to enable our algorithm to compute approximating inconsistency degrees in
theoretically tractable time.
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The rest of this paper is organized as follows. In the next section, we give
preliminaries about a four-valued semantics of first-order logic. In Section 3, we
give the reduction from four-valued logic to two-valued logic which is important
for computation. In Section 4, we give the definition of inconsistency measure of
a first-order knowledge base, and then, in Section 5, we give a precise algorithm
to compute the inconsistency degrees. In Section 6, we show that our algorithm
can be modified to generate approximating inconsistency degrees in theoretically
tractable time. Finally, we discuss related work in Section 7 and conclude the
paper in Section 8.

This paper is a substantial extension of the paper [22] with some content
from [23].

2 Preliminaries: Four-valued Logics

2.1 Belnap’s Four-valued Logic and Bilattice

The set of truth values for four-valued semantics [4, 1] contains four elements:
true, false, unknown (or undefined) and both (or overdefined, contradictory).
We use the symbols t, f,N,B, respectively, for these truth values. The truth
value B stands for contradictory information, hence enabling four-valued logic
to represent inconsistency. The value B thus can be understood to stand for
both true and false, while N stands for neither true nor false, i.e. for the
absence of any information about truth or falsity. The four truth values to-
gether with two orderings �t and �k defined below form a bilattice FOUR =
({t, f, B,N},�t,�k), shown as in Figure 1. We have that f �t N �t t, f �t B �t
t, where N and B are incomparable with respect to �t. Furthermore, N �k
t �k B,N �k f �k B, where t and f are incomparable with respect to �k .
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Fig. 1. FOUR

The four-valued semantics of the connectives ∨,∧ is defined according to the
upper and lower bounds with respect to �t: ∨ is given by the upper bound,
∧ by the lower bound. The operator ¬ is defined as ¬t = f,¬f = t,¬B = B,
and ¬N = N . By this definition, the connectives ∨,∧,¬ are monotonic with
respect to �k — that is, for x, y ∈ {t, f, B,N} satisfying x �k y, we have
¬x �k ¬y; For x1, x2, y1, y2 ∈ {t, f, B,N} satisfying x1 �k x2, y1 �k y2, we have
(x1 ◦ y1) �k (x2 ◦ y2) for ◦ ∈ {∧,∨}.
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2.2 Four-valued Semantics for First-order Logic

A specific first-order language L is determined by sets of predicate and function
symbols (including constants), written L = 〈P,F〉 for a given set of predicate
symbols P and a set of function symbols F . 0-ary functions are called constants
and we use the symbol C to denote the set of constant symbols of the language
under consideration. First-order formulae are built up from predicates, functions,
a set of variables V and the set of logical symbols {¬,∨,∧,∀,∃,→}, where α→ β
is the short form of ¬α ∨ β. The language of a formula φ (a knowledge base Γ ),
written L(φ) (L(Γ )), consists of the predicates and functions used in the formula
(knowledge base). We say that two formulae φ and ψ (knowledge bases Φ and
Ψ) share the same language if and only if L(φ) = L(ψ) (L(Φ) = L(Ψ)).

We assume that the reader is familiar with the usual definitions and notations
for a language including definitions of free variables, bound variables, and ground
formulae. An atom is of the form P (t1, ..., tn), where t1, ..., tn are terms. A first-
order knowledge base considered in this paper is a finite set of first-order formulae
without free variables. In this paper, whenever we want to clarify the arity of
a function or a predicate, we may state the arity in parentheses following the
function or the predicate symbol, e.g. f(n), P (n) mean f, P are an n-ary function
and predicate, respectively. We also use t (possibly with subscripts) for terms,
Greek lowercase symbols α, φ for formulae, and uppercase Γ for a first-order
knowledge base. The set of all predicates occurring in Γ is denoted by P(Γ ).
The cardinality of a set A is denoted by |A|.

Formally, a four-valued interpretation I of a first-order knowledge base is
defined as follows.

Definition 1 A four-valued interpretation I = (∆I, ·I) contains a non-empty
domain ∆I and a mapping ·I which assigns

– to each constant c an element of ∆I, written cI;

– to each n-ary function symbol f an n-ary function on ∆I, written fI :

(∆I)n 7→ ∆I, where (∆I)n =

n︷ ︸︸ ︷
∆I × ...×∆I;

– to each n-ary predication symbol P a pair of n-ary relations on ∆I, written
〈P+, P−〉, where P+, P− ⊆ (∆I)n.

Recall, that a classical first-order interpretation maps each n-ary predicate to
an n-ary relation on the domain. A four-valued interpretation assigns a pairwise
n-ary relation 〈P+, P−〉 to each n-ary predicate P , where P+ explicitly denotes
the set of n-ary vectors which have the relation P under interpretation I and
P− explicitly denotes the set of n-ary vectors which do not have the relation P
under interpretation I. If a four-valued interpretation I satisfies P+ ∪ P− = ∆I

and P+ ∩ P− = ∅, then it is a classical interpretation.

The definition of a state σ : V 7→ ∆I remains the same as in classical seman-
tics of first-order logic, which is a mapping assigning to each variable occurring
in V an element of the domain. Given a state σ and an interpretation I, the
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semantics of terms is defined inductively as follows:

(a)I,σ = aI , if a ∈ C
(v)I,σ = vσ, if v ∈ V

f(t1, ..., tn)I,σ = fI(tI,σ1 , ..., tI,σ1 ), if f ∈ F , t1, ..., tn are terms.

We denote by σ{x 7→ d} the state obtained from σ by assigning d to x while
leaving other assignments to other variables unchanged.

Given an interpretation I and a state σ, the four-valued semantics of an
atomic formula can be defined as follows.

Definition 2 Assume P (t1, ..., tn) is an n-ary predicate, where t1, ..., tn are
terms. I is a four-valued interpretation and σ is a state. Then the truth value
assignment to atomic predicates and equality is defined as follows:

(P (t1, ..., tn))I,σ = t, if and only if (tI,σ1 , ..., tI,σn ) ∈ P I
+ and (tI,σ1 , ..., tI,σn ) 6∈ P I

−

(P (t1, ..., tn))I,σ = f, if and only if (tI,σ1 , ..., tI,σn ) 6∈ P I
+ and (tI,σ1 , ..., tI,σn ) ∈ P I

−

(P (t1, ..., tn))I,σ = B, if and only if (tI,σ1 , ..., tI,σn ) ∈ P I
+ and (tI,σ1 , ..., tI,σn ) ∈ P I

−

(P (t1, ..., tn))I,σ = N, if and only if (tI,σ1 , ..., tI,σn ) 6∈ P I
+ and (tI,σ1 , ..., tI,σn ) 6∈ P I

−

Based on the semantics of atomic predicates, the semantics of complex formulae
can be defined inductively as follows:

Definition 3 Let ϕ and φ be two first-order formulae, γ(x1, ..., xn) a formula
containing n free variables, I a four-valued interpretation and σ be a state. Then,

(¬ϕ)I,σ = ¬(ϕ)I,σ; (ϕ ∧ φ)I,σ = ϕI,σ ∧ φI,σ; (ϕ ∨ φ)I,σ = ϕI,σ ∨ φI,σ

(∀x1, ..., xn.γ(x1, ..., xn))I,σ = inf
σ′=σ{x1 7→d1,...,xn 7→dn}

(γ(d1, ..., dn))I,σ
′

(∃x1, ..., xn.γ(x1, ..., xn))I,σ = sup
σ′=σ{x1 7→d1,...,xn 7→dn}

(γ(d1, ..., dn))I,σ
′
,

where σ′ = σ{x1 7→ d1, ..., xn 7→ dn} is a substitution state of σ as defined in
classical FOL, and the infimum inf (resp. supermum sup) is the greatest lower
(least upper) bound of a set according to the ordering �t1.

In Section 2.1, it is shown that the connectives ¬,∧,∨ are monotonic with
respect to the order �k for the four-valued propositional logic. Next we show
that the same property is maintained for four-valued first-order connectives.

Proposition 1 The first-order connectives ¬,∧,∨,∀,∃ are monotonic with re-
spect to the ordering �k.

Proof. The monotonicity of ¬,∧,∨ can be proved similarly as in the proposi-
tional case. It is also easy to see that ∀ and ∃ are monotonic with respect to �k
by Definition 3 and the monotonicity of infimum and supermum. �

1 The infimum and supermum always exist since the set of truth values
((γ(d1, ..., dn))I,σ

′
) is bounded w.r.t. the ordering �t.
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A four-valued interpretation I is a 4-model of a first-order knowledge base Γ
if and only if for each formula α ∈ Γ , αI ∈ {t, B}. A knowledge base which has a
4-model is called 4-valued satisfiable. Four-valued entailment for first-order logic
can be defined in a standard way as follows.

Definition 4 Suppose Γ is a first-order knowledge base and α is a first-order
formula. Γ 4-valued entails α, written Γ |=4 α, if and only if every 4-model of
Γ is a 4-model of α.

Proposition 2 Given a first-order knowledge base Γ , Γ always has a 4-model
of any domain size if UNA (the unique name assumption2) is not considered. If
UNA is used, Γ always has 4-models whose sizes are equivalent to or larger than
the number of constants in Γ .

Proof. If UNA is not considered, consider a four-valued interpretation I which
assigns 〈∆I, ∆I〉 to each predicate p ∈ P. Then we can see that for any formula
φ ∈ Γ φI,σ = B for any state σ by noting that we don’t have boolean constants
{t, f} in our first-order language. That is, φ is four-valued satisfiable under I,
and so is Γ . If UNA is used, we further require that I satisfies aI 6= bI for each
a, b ∈ C. Similarly to above inference, the conclusion holds. �

This property lays the foundation for analyzing the inconsistency degrees of
inconsistent knowledge bases defined by four-valued models.

Example 1 (Canonical example) Consider knowledge base Γ consisting of the
following formulae:

Penguin(tweety),

Bird(fred),

∀x.Bird(x)→ Fly(x),

∀x.Penguin(x)→ Bird(x),

∀x.Penguin(x)→ ¬Fly(x).

Obviously, Γ has no two-valued model. However, it has a 4-model I = (∆I, ·I),
where ∆I = {a, b} and ·I is defined as tweetyI = a, fredI = b,FlyI(a) =
B,PenguinI(a) = BirdI(a) = BirdI(b) = FlyI(b) = t,PenguinI(b) = f.

Proposition 2 guarantees that we can always have finite four-valued models to
explicitly display inconsistencies in knowledge bases.

3 Computing Four-valued Entailment of First-order Logic

Our four-valued semantics is an extension of classical semantics. Additionally,
4-valued entailment can be reduced to classical entailment. The reduction in the
propositional case is studied in [2]. We extend it to the first-order case.

2 That is, if c and d are distinct constants, then cI 6= dI for each interpretation I.
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Theorem 3 Let Γ be a first-order knowledge base in negation normal form and
φ be a formula. Γ |=4 φ if and only if Θ(Γ ) ` Θ(φ), where Θ(φ) is a function
defined inductively on the structure of a formula as follows and Θ(Γ ) = {Θ(φ) |
φ ∈ Γ}:

– Θ(c) = c, if c is a constant.
– Θ(P (x1, ..., xn)) = P+(x1, ..., xn), where P+ is a new atomic n-ary predicate;
– Θ(¬P (x1, ..., xn)) = P−(x1, ..., xn), where P− is a new n-ary predicate;
– Θ(ϕ1(x1, ..., xn)◦ϕ2(y1, ..., ym)) = Θ(ϕ1(x1, ..., xn))◦Θ(ϕ2(y1, ..., ym)), where
◦ ∈ {∧,∨};

– Θ(ϕ1(x1, ..., xn)→ ϕ2(y1, ..., ym)) = Θ(¬ϕ1(x1, ..., xn)) ∨Θ(ϕ2(y1, ..., ym)).
– Θ(Qx.ϕ) = Qx.Θ(ϕ), where Q ∈ {∀,∃}.

Before we give the proof of this theorem, we first use the following example to
illustrate the transformation defined in it.

Example 2 (Example 1 continued) Consider Γ used in Example 1. By perform-
ing the Θ operator defined in Theorem 3, we have:

Θ(Γ ) = {Penguin+(tweety),Bird+(freg),∀x.Bird−(x) ∨ Fly+(x),

∀x.Penguin−(x) ∨ Bird+(x),∀x.Penguin−(x) ∨ Fly−(x)}.

In order to prove this theorem, we need the following definitions and Lemmas.

Given a first-order language L = 〈P,F〉, a new first-order language induced
by L is defined as L′ = 〈P ′,F〉, where P ′ = {p+(n), p−(n) | p(n) ∈ P}. That is,
the language L′ differs from L only in the set of predicates which is formed by
replacing each predicate p(n) in L by two new predicates p+(n) and p−(n).

Definition 5 (Two-interpretation induced by a four-interpretation) Given a four-
valued interpretation I4 on a language L = 〈P,F〉 and a two-valued interpre-
tation I2 on L′ = 〈P ′,F〉, we call I2 a two-interpretation induced by I4 if the
following conditions are satisfied:

1. For each function symbol f ∈ F , fI2 = fI4 ;
2. For each predicate symbol p ∈ P, {p+, p−} ⊆ P ′, and any state σ,

(p+(t1, ..., tn))I2,σ = t if and only if (p(t1, ..., tn))I4,σ = t or B;

(p−(t1, ..., tn))I2,σ = t if and only if (p(t1, ..., tn))I4,σ = f or B.

The underlying intuition of the second condition in the above definition is that
(p+(t1, ..., tn))I2,σ is assigned to t if and only if (p(t1, ..., tn))I4,σ has the infor-
mation of being true; whilst (p−(t1, ..., tn))I2,σ is assigned to t if and only if
(p(t1, ..., tn))I4,σ has the information of being false.

Lemma 4 Given a knowledge base Γ , for any four-valued interpretation I4, Γ
is satisfied by I4 if and only if Θ(Γ ) is satisfied by the two-interpretation induced
by I4 (see Theorem 3 for the definition of Θ(Γ )).
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Proof. Let I2 be the two-interpretation induced by I4. For each formula φ ∈ Γ
without variables, by induction on its structure, we prove that φ is satisfied by
I4 if and only if Θ(φ) is satisfied by I2 — that is, φI4 ∈ {t, B} if and only if
(Θ(φ))I2 = t.

Indeed, in the basic case of an atomic formula (i.e., φ = p(t1, ..., tn)), by the
definition of I2 in Definition 5, we have (Θ(φ))I2 = t if and only if φI4 ∈ {t, B}.
Inductively, we have the following.

– If φ = ¬p(t1, ..., tn), then (Θ(φ))I2 = (p−(t1, ..., tn))I2 = t if and only if
(p(t1, ..., tn))I4 ∈ {f,B} by Definition 5 if and only if (¬p(t1, ..., tn))I4 ∈
{t, B} by Definition 3, that is, φI4 ∈ {t, B}.

– If φ = ϕ ∧ ψ, it is easy to see that the conclusion holds because (ϕ ∧ ψ)I4 ∈
{t, B}, if and only if ϕI4 ∈ {t, B} and ψI4 ∈ {t, B} by Definition 3, if and
only if (Θ(ϕ))I2 = t and (Θ(ψ))I2 = t by the induction hypotheise, that is,
(Θ(ψ ∧ ϕ))I2 = t.

– If φ = ϕ ∨ ψ, it can be shown in a similar way by the semantics of ∨.
– If φ = ∀x1, ..., xn.ψ(x1, ..., xn), then by Definition 3, we have φI4 ∈ {t, B} if

and only if ψ(x1, ..., xn)I4,σ ∈ {t, B} for all states σ. Now for the given inter-
pretation I4, we add to the language of Γ a collection of constant symbols,
one for each element in the domain of I4; say that for each d in the domain
of I4 the constant symbol cd is fixed. The interpretation I4 is extended so
that each new constant symbol is assigned to its corresponding element of
the domain. Then we have (ψ(cd1 , ..., cdn))I4 ∈ {t, B}. Using the induction
hypothesis that the conclusion holds for the formula ψ(cd1 , ..., cdn), we have
(Θ(ψ)(cd1 , ..., cdn))I2 = t, that is, (∀x1, ..., xn.Θ(ψ)(x1, ..., xn))I2 = t which
infers that Θ(φ)I2 = t (by the definition of Θ(·) in Theorem 3).

– If φ = ∃x1, ..., xnψ(x1, ..., xn), it can be shown in a way similar to the case
of φ = ∀x1, ..., xnψ(x1, ..., xn).

In all, φI4 ∈ {t, B} if and only if (Θ(φ))I2 = t. �

Definition 6 (Four-interpretation induced by two-interpretation) Let Θ(L) =
〈Θ(P),F〉. Given a four-valued interpretation I2 on a language Θ(L), we call
a two-valued interpretation I4 on L a four-interpretation induced by I2 if I4
satisfies the following conditions:

1. For each function symbol f ∈ F , fI4 = fI2 ;
2. For each predicate symbol p ∈ P, p+, p− ∈ Θ(P), and any state σ,

(p(t1, ..., tn))I4,σ = t iff. (p+(t1, ..., tn))I2,σ = t and (p−(t1, ..., tn))I2,σ = f ;

(p(t1, ..., tn))I4,σ = f iff. (p+(t1, ..., tn))I2,σ = f and (p−(t1, ..., tn))I2,σ = t;

(p(t1, ..., tn))I4,σ = B iff. (p+(t1, ..., tn))I2,σ = t and (p−(t1, ..., tn))I2,σ = t;

(p(t1, ..., tn))I4,σ = N iff. (p+(t1, ..., tn))I2,σ = f and (p−(t1, ..., tn))I2,σ = f.

Lemma 5 For any knowledge base Γ and any two-valued interpretation I2 for
Θ(Γ ), Γ is satisfied by the four-interpretation induced by I2 if and only if Θ(Γ )
is satisfied by I2.
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Proof. This lemma can be proved in a similar way as Lemma 4. �

Now we turn to the proof of Theorem 3.

Proof. (⇒) For each two-valued model I2 of Θ(Γ ), let I4 be the 4-model induced
by I2. By Lemma 5, we know that I4 is a model of Γ . Then by the precondition
Γ |=4 φ, we know I4 is a model of φ. By Lemma 5, we know I2 is a model of
Θ(φ).

(⇐) For each 4-model I4 of Γ , let I2 be the two-valued model induced by
I4. By Lemma 4, we know that I2 is a model of Θ(Γ ). Then by the precondition
Θ(Γ ) |=2 Θ(φ), we know I2 is a model of Θ(φ). By Lemma 4, we know I4 is a
model of φ. �

An example to illustrate Theorem 3 is given in Section 5 where the compu-
tation of four-valued entailment of a first-order knowledge base is required as a
midstep of computing inconsistency degrees.

4 Inconsistency Measure by Four-valued Semantics

To measure inconsistency of a first-order knowledge base, we consider only finite
knowledge bases and only finite domains in this paper, that is, the knowledge
bases only contain finite formulae and the domains of their four-valued inter-
pretations are finite. This is reasonable for practical cases because only finitely
many individuals can be represented or would be used [8]. It is also reason-
able in theory because we have shown that finite domains can already produce
nonempty set of four-valued models for any knowledge base, which can be used
to define an inconsistency measure. In contrast, an inconsistency degree based
on infinite domains is defined in [9] and is shown to be binary valued (∞>,∞⊥),
which makes it less sensitive for distinguishing between different inconsistent
knowledge bases.

The definition of inconsistency degree used in this paper comes from [8] and
is defined as follows.

Definition 7 Let Γ be a first-order knowledge base and I = (∆I, ·I) be a four-
valued model of Γ . The inconsistency degree of Γw.r.t. I, denoted IncI(Γ ), is a
value in [0, 1] calculated in the following way:

IncI(Γ ) =
|Conflict(I, Γ )|
|Ground(I, Γ )|

where Ground(I, Γ ) = {P (d1, ..., dn) | d1, ..., dn ∈ ∆I, P (n) ∈ P(Γ )}3, and
Conflict(I, Γ ) = {(P (d1, ..., dn))I = B | d1, ..., dn ∈ ∆I, P (n) ∈ P(Γ )}.

Intuitively, the inconsistency degree of Γ w.r.t. I is the ratio of the number of
conflicts divided by the amount of all possibilities. It measures to what extent a
given first-order knowledge base Γ contains inconsistencies w.r.t. I.

3 W.l.o.g., we assume that all constant symbols in knowledge bases are elements of
the domain.
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Example 3 (Example 1 continued)
For the given knowledge base Γ and the four-valued model I of Γ , we have

Ground(I, Γ ) = {Bird(a),Penguin(a),Fly(a),Bird(b),Penguin(b),Fly(b)},
Conflict(I, Γ ) = {Fly(a)}.

So IncI(Γ ) = 1
6 .

Let us consider a different 4-valued model I′ of Γ where tweetyI
′

= a, fredI′ =

b,FlyI
′
(a) = PenguinI′(a) = BirdI′(a) = BirdI′(b) = FlyI

′
(b) = B, and where

PenguinI′(b) = f. Obviously, |Ground(I′, Γ )| = 6 and |Conflict(I′, Γ )| = 5, so
IncI′(Γ ) = 5

6 . Intuitively, I′ interprets more atoms as conflicting than I. That
is, it somehow overestimates inconsistencies in Γ compared to I.

By this example, we see that for a first-order knowledge base, its different
4-valued models with the same domain might give rise to different inconsistency
degrees. To define an inconsistency measure, the ones which do not over-estimate
inconsistency degrees are preferred. To this end, a partial ordering is defined on
the set of models as follows.

Definition 8 (Model ordering w.r.t. inconsistency) Let I1 and I2 be two four-
valued models of a first-order knowledge base Γ such that |∆I

1 | = |∆I
2 |. We

say that I1 is less inconsistent than I2, written I1 ≤Incons I2, if and only if
IncI1

(Γ ) ≤ IncI2
(Γ ).

As usual, I1 <Incons I2 denotes I1 ≤Incons I2 and I2 6≤Incons I1, and I1 ≡Incons

I2 denotes I1 ≤Incons I2 and I2 ≤Incons I1. I1 ≤Incons I2 means that I1 is more
consistent than I2. The models of size n which are minimal w.r.t ≤Incons are
called preferred models and they are formally defined as follows.

Definition 9 (Preferred Models) Let Γ be a first-order knowledge base, M4(Γ )
be the set of 4-models of Γ , and n(n ≥ 1) be a given cardinality. Preferred models
of size n w.r.t. ≤Incons , written PreferModeln(Γ ), are defined as follows:

PreferModeln(Γ ) = {I | |∆I| = n;∀I′ ∈M4(Γ ), |∆I′ | = n implies I ≤Incons I
′}.

By Proposition 2 and Definition 9, it is not hard to see that given a first-
order knowledge base and an integer n, we can always find a preferred model
if the unique name assumption is not used. Otherwise, with the unique name
assumption, we only can find a preferred model provided that n is not less than
the number of constants appearing in the knowledge base.

As a direct consequence of Definitions 8 and 9, the following corollary shows
that for any two preferred four-valued models of a first-order knowledge base
with the same cardinality, the inconsistency degrees of the knowledge base with
respect to them are equal.

Corollary 6 Let Γ be a first-order knowledge base and n(≥ 1) be any given posi-
tive integer. Suppose I1 and I2 are two four-valued models of Γ such that |∆I1 | =
|∆I2 | = n, and {I1, I2} ⊆ PreferModeln(Γ ). Then IncI1

(Γ ) = IncI2
(Γ ).
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Based on Corollary 6, the definition of inconsistency degree based on pre-
ferred models of a first-order knowledge base is well-defined. Following [8], we
also use a sequence of inconsistency degrees as the inconsistency measure of a
first-order knowledge base because such a sequence reflects the inconsistency
degrees of the knowledge base with respect to all finite domains.

Definition 10 Given a first-order knowledge base Γ and a finite cardinality
n(n ≥ 1), let In be an arbitrary model in PreferModelsn(Γ ). The inconsistency
measure of Γ , denoted by IncMea(Γ ), is defined as 〈r1, r2, ..., rn, ...〉, where rn =
∗ if PreferModeln(Γ ) = ∅, and rn = IncIn(Γ ) otherwise. We use ∗ as a kind of
null value.

Example 4 (Example 1 continued) We have IncMea(Γ ) = 〈∗, 16 , ...,
1
3n , ...〉 if

UNA is used. If UNA is not used, IncMea(Γ ) = 〈 13 ,
1
6 , ...,

1
3n , ...〉. This is because

the 4-models which only assign Fly(tweety) to B are among the preferred models
in the cases of any finite domain.

In the rest of this section, we discuss some properties of the inconsistency
measure as defined above.

Proposition 7 (Strict Positivity) Given an inconsistent first-order knowledge
base Γ , assume |C| is the number of constants of Γ and IncMea(Γ ) = 〈r1, r2, ...〉.
Then for i ≥ |C|, ri 6= ∗ and ri > 0.

Proof. Suppose i ≥ |C| and ri = 0. Then there is a preferred model I of Γ
such that Conflict(I, Γ ) = ∅. Since Γ is inconsistent and does not have classical
models, there is a set Ω of atoms assigned the truth value N under I. Suppose
I ′ is obtained by replacing the assignment of N by t to each atom in Ω. Then
by Proposition 1, we know I(φ) �k I ′(φ) for each formula φ ∈ Γ , that is,
if I(φ) ∈ {t, B}, so is I ′(φ). By this fact and the assumption that I is a four-
valued model of Γ , we know that I ′ is also a four-valued model of Γ . In fact, I ′ is
a classical model with no assignment of B or N to atoms. This is a contradiction
with the assumption that Γ is inconsistent. �

This proposition shows that for any given first-order knowledge base, its incon-
sistency measure cannot be a meaningless sequence (i.e., each element is the
null value ∗) no matter whether UNA is used or not. Moreover, the non-zero
values in the sequence start at least from the position which equals the number
of constants in the first-order knowledge base, and remains greater than zero in
the latter positions of the sequence.

Suppose IncMea(Γ1) = 〈r11, r12, ..., r1n, ...〉 and IncMea(Γ2) = 〈r21, r22, ..., r2n, ...〉.
We say that Γ1 is more inconsistent than Γ2, written IncMea(Γ1) ≥ IncMea(Γ2),
if there is number N , such that for each n > N , r1n ≥ r2n. We say that Γ1

is as inconsistent as Γ2, written IncMea(Γ1) = IncMea(Γ2), if IncMea(Γ1) ≥
IncMea(Γ2) and IncMea(Γ2) ≥ IncMea(Γ1).

Theorem 8 (Syntax Independence) Suppose Γ1 |=4 Γ2 and Γ1 |=4 Γ2, then
IncMea(Γ1) = IncMea(Γ2).
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Proof. The proof is obvious because PreferModeln(Γ1) = PreferModeln(Γ2)
and Γ1 and Γ2 share the same language. �

The following example illustrates that the inconsistency measure defined
above is independent of the syntax of a knowledge base.

Example 5 Suppose we have the following two knowledge bases:

Γ1 = {∀x.A(x) ∧B(x),∀x.¬A(x) ∧ ¬B(x)}
Γ2 = {∀x.A(x),∀x.B(x),∀x.¬A(x),∀x.¬B(x)}.

By Theorem 8, we have IncMea(Γ1) = IncMea(Γ2). This coincides with the
intuition that Γ1 and Γ2 contain the same extent of inconsistency.

The following theorem shows that if one inconsistent knowledge base 4-valued
logically implies some other one, then the former suffers from more inconsisten-
cies than the later.

Theorem 9 (Monotonicity w.r.t. Deductive Strength) Assume Γ1 and Γ2 are
two knowledge bases sharing the same language. If Γ1 |=4 Γ2, then Γ1 is more
inconsistent than Γ , that is, IncMea(Γ1) ≥ IncMea(Γ2).

Proof. By Model4(Γ ) we denote the set of four-valued models of Γ . Since Γ1 |=4

Γ2, we have Model4(Γ1) ⊆ Model4(Γ2). For each domain of size n, and arbitrary
two preferred models I1 ∈ PreferModeln(Γ1) and I2 ∈ PreferModeln(Γ2), we
claim |Conflict(I2, Γ2)| ≤ |Conflict(I1, Γ1)|. Otherwise, by the fact that I1 ∈
Model4(Γ2) we know I2 cannot be a preferred model of Γ2. Moreover, we have
Ground(I1, Γ1) = Ground(I2, Γ2) because Γ1 and Γ2 share the same language.
By Definitions 7 and 10, we have IncMea(Γ1) ≥ IncMea(Γ2). �

Since four-valued logic is monotonic, the following is a straightforward corol-
lary of Theorem 9. It shows that each subset of a knowledge base is less incon-
sistent than the whole knowledge base if we consider the same language.

Corollary 10 (Monotonicity w.r.t. Containment) Suppose Γ1 ⊆ Γ2, and they
share the same language, we have IncMea(Γ1) ≤ IncMea(Γ2).

As mentioned in Section 1, a way to resolve inconsistencies in knowledge bases
is by pinpointing the problematic formulae and then deleting some necessary
ones to obtain a consistent knowledge base. By this theorem, we can see that
the process of deleting formulae without changing the vocabulary of knowledge
bases is just a way to reduce the inconsistency degree. When the inconsistency
degree decreases to zero, the obtained knowledge base becomes consistent.

5 Computing Inconsistency Degrees

A naive way to compute the inconsistency degree is to enumerate models to
find a preferred one, and then count the number of atoms which are assigned
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B by the preferred model. Unfortunately, this naive method does not work be-
cause enumeration of all models of a first-order knowledge base is not practica-
ble. Therefore, in this section, we propose an algorithm which can reduce the
computation of an inconsistency degree w.r.t. an arbitrary domain size to the
classical satisfiability problem, such that existing SAT solvers can be used for
computing inconsistency degrees. This is achieved by means of the S[n]-4 se-
mantics for first-order logic, which will be discussed in details in Section 5.1.
Our S[n]-4 semantics is inspired by the S-3/S-1 semantics which are proposed
for approximating reasoning in [28].

5.1 S[n]-4 Semantics

In this subsection, we define S[n]-4 semantics for first-order logic, which will serve
as the basis for our algorithm for computing inconsistency degrees in Section 5.2.

Throughout this section, we assume that there is an underlying finite set of
predicates P used for building all formulae and that the domain of size n is Dn =
{a1, ..., an}. We define the ground atomic formulae set, written Base(P,Dn), as
the set {P (ai1 , ..., aim) | P (m) ∈ P, ai1 , ..., aim ∈ Dn}.

Definition 11 (S[n]-4 Interpretation) Let Dn = {a1, ..., an} be a domain of
size n and S be any given subset of Base(P,Dn). A 4-valued interpretation I
with domain Dn is called an S[n]-4 interpretation if and only if it satisfies the
following condition, where B,N, t, f are the truth values of FOUR:

φI =

{
B, if φ ∈ Base(P,Dn) \ S,

N or t or f, if φ ∈ S

That is, I is an S[n]-4 interpretation if and only if it is a 4-valued interpretation
with domain of size n which assigns the contradictory truth value B to the
ground atomic formulae not in S, and non-contradictory truth values {N, t, f}
to ground atomic formulae in S.

Definition 12 Let Γ be a first-order knowledge base. An S[n]-4 interpretation
I is an S[n]-4 model of Γ if and only if it is a 4-model of Γ . A knowledge base
is S[n]-4 satisfiable if and only if it has an S[n]-4 model.

Example 6 Let P = {p(x), q(x, y)}, n = 2, D2 = {a1, a2}. Then

Base(P,D2) = {p(a1), p(a2), q(a1, a1), q(a2, a2), q(a1, a2), q(a2, a1)}.

Consider Γ = {∃x.(p(x) ∧ ¬p(x)),∀x∃y.q(x, y)}.

� Let S1 = {p(a2), q(a1, a1), q(a2, a2), q(a1, a2), q(a2, a1)}. Γ is S1[2]-4 satisfi-
able and has the following S1[2]-4 model I: pI(a1) = B, and ϕI = t for all
ϕ ∈ S1.

� Let S2 = {p(a1), p(a2)}. Γ is S2[2]-4 unsatisfiable since all S2[2]-4 interpre-
tations should map neither p(a1) nor p(a2) to B, so ∃x.p(x)∧¬p(x) cannot
be satisfied.

13



Definition 13 (S[n]-4 entailment) A formula φ is S[n]-4 implied by a knowl-
edge base Γ , denoted Γ |=4

S[n] φ, if and only if every S[n]-4 model of Γ is an

S[n]-4 model of φ.

The relation between S[n]-4 satisfiability and S[n]-4 entailment is as follows.

Proposition 11 Γ is S[n]-4 unsatisfiable if and only if Γ |=4
S[n] f , where f

is a 0-ary predicate which is assigned the truth value f in FOUR under any
four-valued interpretation.4

Proof. This is obvious by Definition 12 and Definition 13. �

To benefit from state-of-the-art classical reasoners, in this paper we study a
way to compute S[n]-4 entailment by invoking a classical reasoner. This contains
two steps: the reduction of S[n]-4 entailment to the 4-valued entailment of first-
order logic, which is given in the following theorem; and the reduction from
the 4-valued entailment to the classical entailment of first-order logic, which has
been shown in Section 3.

Theorem 12 Let Dn = {a1, ..., an} be a domain of size n(n ≥ 1) and S be any
given subset of Base(P,Dn), say S = {α1, ..., αm}. Denote T = Base(P,Dn) \
S = {β1, ..., βk}. Then the following claim holds:

Γ |=4
S[n] ϕ if and only if Γ ∧

∧
1≤i≤k

(βi ∧¬βi)∧En |=4 ϕ∨
∨

1≤j≤m

(αj ∧¬αj), (1)

where En = ∃x1, ..., xn.
∧

1≤i,j≤n(xi 6≡ xj) ∧ ∀y.
∨

1≤i≤n(y ≡ xi).5

Proof. Let Γ ′ = Γ ∧
∧

1≤i≤k(βi ∧¬βi)∧En and let ϕ′ = ϕ∨
∨

1≤j≤m(αj ∧¬αj).
(⇒) For any 4-model I4 of Γ ′, we show that I4 satisfies ϕ′. First, from the

assumption that I4 satisfies Γ ′, we know |∆I4 | = n and I4(βi) = B for 1 ≤ i ≤ k.
If there is j0, 1 ≤ j0 ≤ m such that I4(αj0) = B, then I4 is a 4-valued model
of ϕ′. Otherwise, that is, for each 1 ≤ j ≤ m, I4(αj) 6= B, then I4 is an S[n]-4
model of Γ , so I4 satisfies ϕ by hypothesis and therefore satisfies ϕ′.

(⇐) For any S[n]-4 model IS of Γ , we show that IS satisfies ϕ. By definition
of IS , we have that |∆IS | = n, IS(βi) = B for 1 ≤ i ≤ k, and that IS(αj) 6= B
for 1 ≤ j ≤ m. So IS is a 4-model of Γ ′ but does not satisfy

∨
1≤j≤m(αj ∧¬αj).

Then IS satisfies ϕ by hypothesis, that is, Γ |=4
S[n] ϕ. �

4 We will see later in Corollary 13 and Theorem 14 that the 0-ary predicate is not neces-
sary when computing inconsistency degrees of first-order knowledge bases. Therefore,
it is not contained in the four-valued first-order language in this paper.

5 The ≡ occurring here is given the classical semantics, that is, (x ≡ y)I,σ = t if and
only if xσ = yσ and (x ≡ y)I,σ = f if and only if xσ 6= yσ. It is only used for
reducing S[n]-4 semantics to classical semantics. We can see later in Corollary 13
that we do not require to do four-valued reasoning with ≡, so it is not introduced
into the four-valued first-order language used in this paper.
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Intuitively, the second entailment relation in Theorem 12 can be explained
as follows: for each 4-model I of Γ , if I satisfies that

1. it has an n-size domain (i.e., En is satisfied by I) and
2. it assigns the truth value B to each element in Base(P,Dn) \ S (i.e., the

conjunction
∧

1≤i≤k(βi ∧ ¬βi) is satisfied by I),

then I is either an S[n]-4 model of Γ or it assigns B to at least one element in
S (i.e., the disjunction

∨
1≤j≤m(αj ∧ ¬αj) is true under I).

Corollary 13 Let S = {α1, ..., αm} and let T = Base(P,Dn) \S = {β1, ..., βk}.
Γ is S[n]-4 unsatisfiable if and only if

Θ

Γ ∧ ∧
1≤i≤k

(βi ∧ ¬βi)

 ∧ En ` ∨
1≤j≤m

Θ((αj ∧ ¬αj)).

Proof. Γ is S[n]-4 unsatisfiable if and only if Γ |=4
S[n] f by Proposition 11, if

and only if Γ ∧
∧

1≤i≤k(βi ∧ ¬βi) ∧ En |=4 f ∨
∨

1≤j≤m(αj ∧ ¬αj) by Theorem
12, if and only if Γ ∧

∧
1≤i≤k(βi ∧¬βi)∧En |=4

∨
1≤j≤m(αj ∧¬αj), which infers

the conclusion by Theorem 3 and the fact that Θ(En) = En. �

This result shows that S[n]-4 satisfiability checking can be reduced to classical
entailment reasoning in first-order logic.

5.2 A Precise Algorithm for Computing Inconsistency Degrees

In this section, we first study how the computation of inconsistency degrees of
a knowledge base Γ can be characterized by S[n]-4 satisfiability. Then we give
an algorithm to compute inconsistency degrees by invoking a classical reasoner.

Without loss of generality, throughout this section, we assume that the n-
size (n ≥ 1) domain of any 4-valued interpretation is Dn = {a1, ..., an}. Then we
uniformly write Ground(Dn, Γ ) instead of Ground(I, Γ ) defined in Definition 7
for any preferred model I. Moreover, note that S[n]-4 semantics is defined with
respect to a set of ground atomic formulae Base(P,Dn) (Definition 11). In this
paper, whenever we talk about using S[n]-4 semantics to compute the inconsis-
tency degree rn of a knowledge base Γ , the underlying finite set of predicates P
is all the predicates occurring in Γ and therefore Base(P,Dn) = Ground(Dn, Γ ).

Theorem 14 Let IncMea(Γ ) = 〈r1, ..., rn, ...〉. If rn 6= ∗, the equation

rn = 1− C

|Ground(Dn, Γ )|
(2)

holds, where

C = max{|S| : S ⊆ Ground(Dn, Γ ) satisfying that Γ is S[n]-4 satisfiable}.
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Algorithm 1 Computing Inconsistency Degree(Γ, n)

Input: An inconsistent first-order knowledge base Γ and a positive integer n
Output: rn // IncMea(Γ ) = 〈r1, ..., rn, ...〉
1: N ← the number of constants in Γ
2: if n < N and UNA is used then
3: rn ← ∗
4: return rn
5: end if
6: Dn ← {a1, ..., an},
7: a← 0, b← |Ground(Dn, Γ )| − 1 // Ground(Dn, Γ ) is defined as in Definition 7
8: l← ba+b

2
c

9: while a 6= b do
10: if there is an l-sized subset of Ground(Dn, Γ ) such that Γ is S[n]-4 satisfiable

then
11: a← l, l← ba+b

2
c

12: else
13: b← l − 1, l← ba+b

2
c

14: end if
15: end while
16: return rn = 1− l

|Ground(Dn,Γ )|

Proof. Let In be a preferred model and S be the set of atoms none of which is
assigned the contradictory value B by In. Then, Γ is S[n]-4 satisfiable because
In is already an S[n]-4 model of Γ . For any subset S′ ⊆ Ground(Dn, Γ ) such
that |S′| > |S|, we claim that Γ is S′[n]-4 unsatisfiable. Otherwise suppose
IS′ is an S′[n]-4 model of Γ . Obviously, IS′ <Incons In, since |S′| > |S|, we
get a contradiction with the definition of In. Thus C = |Ground(Dn, Γ )| −
|Conflict(In, Γ )|. By Definition 7 and Definition 10, Equation 2 holds. �

Theorem 14 shows that the computation of rn can be reduced to the problem of
computing the maximal cardinality of S such that S is a subset of Ground(Dn, Γ )
and Γ is S[n]-4 satisfiable. We are now ready to give an algorithm to compute
each inconsistency degree rn of the inconsistency measure for a first-order knowl-
edge base, as shown in Algorithm 1.

Algorithm 1 first judges whether rn is meaningful (lines 1 to 5). If it is,
lines 6 to 8 will give some necessary initializations of the n-size domain Dn and
variables a, b, l used in the following dichotomy search. Then it turns to find,
by dichotomy (lines 9 to 15), the maximal size of a subset S ⊆ Γ such that Γ
is S[n]-4 satisfiable. Whenever a = b, the value of rn is calculated by line 16
and the procedure ends. For line 10, the condition of S[n]-4 satisfiability can be
decided by classical entailment of first-order logic according to Corollary 13, such
that each inconsistency degree rn can be computed by a classical satisfiability
reasoner.

We give an example to illustrate Algorithm 1.

Example 7 (Example 4 continued) Assume that UNA is used and n ≥ 2. Ob-
viously, rn will be meaningful. By initialization, we have Dn = {ai | 1 ≤ i ≤ n}
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and Ground(Dn, Γ ) = {Bird(ai),Fly(ai),Penguin(ai) | ai ∈ Dn}. Then the di-
chotomy search will begin with l = b 3n2 c. We can see that there are l-sized subsets
S which can make Γ S[n]-4 satisfiable. For example, when S = {Bird(ai) | 1 ≤
i ≤ l} is selected, an S[n]-4 model of Γ can be the one that assigns all atoms from
S the truth value t and all others the truth value B. Actually, by Theorem 12
and the following Example 8, the dichotomy procedure will end with l0 = 3n− 1
with the following S making Γ S[4]-4 satisfiable:

S = Ground(Dn, Γ ) \ {Fly(a1)}.

Then rn = 1− l0
3n = 1

3n is returned, which coincides with the result of Example 4.

Example 8 (Example 2 continued)
To check that Γ is S[4]-4 satisfiable for S = Ground(Dn, Γ ) \ {Fly(a1)}, by
Theorem 12 we need to check that Γ ′ entails the formula ϕ under the four-valued
semantics, where Γ ′ and ϕ are given as follows:

Γ ′ = Γ ∧ Fly(a1) ∧ ¬Fly(a1) ∧ En
ϕ =

∨
2≤j≤n

(Fly(aj) ∧ ¬Fly(aj)) ∨∨
1≤j≤n

((Bird(aj) ∧ ¬Bird(aj)) ∨ (Penguin(aj) ∧ ¬Penguin(aj))).

By the definition of Θ(·), we easily obtain:

Θ(Γ ′) = Θ(Γ ) ∧ Fly+(a1) ∧ Fly−(a1)) ∧ En
Θ(ϕ) =

∨
2≤j≤n

(Fly+(aj) ∧ Fly−(aj)) ∨∨
1≤j≤n

((Bird(aj)
+ ∧ Bird−(aj)) ∨ (Penguin+(aj) ∧ Penguin−(aj))).

A classical first-order logic reasoner yields Θ(Γ ′) 6` Θ(ϕ). According to Theorem
3, we conclude that Γ ′ 6|=4 ϕ. Then from Proposition 11, it concludes that Γ is
S[4]-4 satisfiable for S = Ground(Dn, Γ ) \ {Fly(a1)}.

Theorem 15 (Correctness of Algorithm 1) Suppose that Γ is a first-order
knowledge base and IncMea(Γ ) = 〈r1, r2, ...rn, ...〉. For each n ≥ 1, we have

rn=Computing Inconsistency Degree(Γ, n),

where Computing Inconsistency Degree(Γ, n) denotes the values returned by Al-
gorithm 1.

Proof. To prove this, by Theorem 14, we only need to show that the search strat-
egy used in Algorithm 1 guarantees that the selected subset S has the maximal
cardinality which satisfies the condition in line 10. Indeed, this is true because
of monotonicity of S[n]-4 satisfiability as shown by Proposition 16 below. More-
over, the search span begins with [0, |Ground(Dn, Γ )|−1] since the inconsistency
of Γ ensures that it is S[n]-4 unsatisfiable when S = Ground(Dn, Γ ). �
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Proposition 16 (Monotonicity of S[n]-4 Satisfiability) For any positive integer
n, consider two sets S and S′ satisfying S ⊆ S′ ⊆ Base(P,Dn). If a knowledge
base Γ is S[n]-4 unsatisfiable, then it is S′[n]-4 unsatisfiable.

Proof. Assume that Γ is S[n]-4 unsatisfiable and that there exists an S′[n]-4
interpretation IS′ satisfying Γ . We construct an S[n]-4 interpretation IS as

φIS =

{
B if φ ∈ S′ \ S,
φIS′ otherwise.

Obviously, IS is an S[n]-4 model of Γ , which is a contradiction. �

At a first glance, we may think that Algorithm 1 would not terminate on
any input first-order knowledge base because of the reduction to the satisfiabil-
ity decision checking of first-order logic which is semi-decidable. But the next
theorem shows that Algorithm 1 actually terminates on any input.

Theorem 17 (Termination of Algorithm 1) Suppose that Γ is a first-order
knowledge base and IncMea(Γ ) = 〈r1, r2, ...rn, ...〉. For each n ≥ 1, the value of
rn can be computed in finite time by Algorithm 1.

Proof. By Corollary 13, Algorithm 1 only invokes satisfiability decision check-
ing with respect to finite domains Dn. Since there will be only finite Herbrand
interpretations on Dn, the satisfiability checking can be done in finite time even
though the input is a first-order knowledge base. Moreover, note that no other
infinite recursions in Algorithm 1 can happen, so Algorithm 1 terminates in finite
time with the correct value returned as stated in Theorem 15. �

6 Approximating Inconsistency Degrees

The algorithm given in the last section provides a general framework for com-
puting accurate inconsistency degrees of first-order knowledge bases with respect
to finite domains. In this section, we study how to adjust this framework to
produce approximating inconsistency degrees which can be computed in theoret-
ically tractable time.

First, we clarify the meaning of approximating inconsistency degrees by for-
mal definitions of upper and lower bounds.

Definition 14 (Upper/Lower Bounds) Suppose that Γ is a first-order knowledge
base and IncMea(Γ ) = 〈r1, ..., rn, ...〉. For each rn, a real x (resp. y) is a lower
(resp. an upper) bound of the nth element of the inconsistency measure of Γ , if
and only if x ≤ rn(resp. y ≥ rn).

An upper bound can be computed in the following way.

Theorem 18 (Upper bound) Given an integer n and S ⊆ Ground(Dn, Γ ), if
K is S[n]-4 satisfiable, then rn ≤ 1− |S|/|Ground(Dn, Γ )|, where rn is the n-th
element of IncMea(Γ ).
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Proof. If K is S[n]-4 satisfiable, K will have an S[n]-4 model I which assigns the
truth value B to and only to every atom p 6∈ S, that is,

|Conflict(I,K)| = |Ground(Dn, Γ )| − |S|.

By the definition of preferred models, Conflict(I,K) ≥ Conflict(Ipre,K) for
every preferred model Ipre. Then we get:

IncMea(K) =
|Conflict(Ipre,K)|
|Ground(Dn, Γ )|

≤ |Conflict(I,K)|
|Ground(Dn, Γ )|

= 1− |S|
|Ground(Dn, Γ )|

. �

Moreover, by Proposition 16, we obtain a way to compute lower bounds of
each element of IncMea(K) as shown in Theorem 19.

Theorem 19 (Lower bound) For a given w (1 ≤ w ≤ |Ground(Dn, Γ )|), if K
is S[n]-4 unsatisfiable for each w-size subset S of Ground(Dn, Γ ), then we have
IncMea(K) ≥ 1− (w − 1)/|Ground(Dn, Γ )|.

Proof. Assume that K is S[n]-4 unsatisfiable for any w-size subset S for n-
sized domain, We claim that K must be S′[n]-4 unsatisfiable for any subset S′

satisfying |S′| > w. Otherwise, suppose there exists an S′ such that |S′| > w
and K is S′[n]-4 satisfiable, then by Proposition 16 there is an S ⊆ S′ such that
|S| = w and K is S[n]-4 unsatisfiable, which yields a contradiction.

The above claim implies that for any preferred model I of K, |Conflict(I,K)| ≥
|Ground(Dn, Γ )| − (w − 1), such that

IncMea(K) ≥ 1− w − 1

|Ground(Dn, Γ )|
= 1− |S| − 1

|Ground(Dn, Γ )|
.

�

So far, we have presented approaches to computing a sequence of inconsistency
degrees of a general first-order knowledge base and their upper and lower ap-
proximations. The approximations have the property that they will converge to
precise values if there is enough computation resource (such that we can check
if Γ is S[n]-4 satisfiable for each S). If we assume that the input first-order
knowledge base is in the form of CNF (conjunctive normal formal), then the
computation of S[n]-4 satisfiability to compute the (precise or approximating)
inconsistency degrees can be achieved by invoking a SAT solver based on the
results given in the previous section.

However, calling a SAT solver means invoking an algorithm for an NP-hard
task, which makes the overall algorithm intractable w.r.t. the size of the input
knowledge base. In the rest of the paper, in order to avoid calls to an intractable
SAT solver, we explore a tractable algorithm, which is polynomial w.r.t. the size
of the input knowledge base, to compute approximating inconsistency degrees.
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Our approach to obtaining the tractable algorithm is based on distinguishing a
tractable S[n]-4 entailment (proportional to the size of input knowledge bases)
by which the computation of approximating inconsistency degrees becomes P-
time. Before presenting our approach, we require some preparations.

As shown in the proof of Theorem 17, the computation of (precise or ap-
proximating) inconsistency degrees with respect to a finite domain only invokes
satisfiability decision checking with respect to a Herbrand domain of the same
size. Then by grounding each clause with elements of the Herbrand base, we ac-
tually get a propositional knowledge base. That is, the computation of (precise or
approximating) inconsistency degrees of a first-order knowledge base is reduced
to the satisfiability decision problem in the propositional logic case. For this rea-
son and in order to simplify notation, the following lemmas are given directly
in terms of propositional logic. We write the language used by a propositional
knowledge base K as Var(K) = {p | p is a propositional variable used in K}.

Lemma 20 Given Var(K), a subset S = {s1, ..., sk} of Var(K) and its comple-
ment S = Var(K) \ S. Suppose ϕ is a formula such that Var({ϕ}) ⊆ Var(K).
Then K |=4

S ϕ if and only if

K ∧
∧
q∈S

(q ∧ ¬q) |=4 ϕ ∨ (c1 ∨ ... ∨ ck)

holds for any combination {c1, ..., ck}, where each ci is either si or ¬si (1 ≤ i ≤
k).

Proof. Let K ′ = K ∧
∧
q∈S(q ∧ ¬q) and ϕ′ = ϕ ∨

∨k
i=1(si ∧ ¬si). First we prove

that K |=4
S[n] ϕ if and only if K ′ |=4 ϕ′.

(⇒) For any 4-model M4 of K ′, M4(q) = B for q ∈ S. If there is j0, 1 ≤ j0 ≤ k
such that M4(sj0) = B, then M4 is a 4-valued model of ϕ′. Otherwise, if for each
1 ≤ j ≤ k, M4(pj) 6= B, then M4 is an S[n]-4 model of K, so M4 satisfies ϕ by
the hypothesis and therefore satisfies ϕ′.

(⇐) For any S[n]-4 model MS of K, by the definition of MS , MS(q) = B for
q 6∈ S, and MS(sj) 6= B for 1 ≤ j ≤ k. So MS is a 4-model of K ′ but does not
satisfy

∨
1≤j≤k(sj ∧ ¬sj). Then MS satisfies ϕ by hypothesis and K |=4

S ϕ.
Secondly, note that the distributive laws w.r.t ∨ and ∧ still hold under the

four-valued semantics, so we know

k∨
i=1

(si ∧ ¬si) ≡4

∧
ci=si,¬si

1≤i≤k

(c1 ∨ ... ∨ ck).

Hence, K |=4
S[n] ϕ if and only if K ∧

∧
q∈S(q ∧ ¬q) |=4 ϕ ∨ (c1 ∨ ... ∨ ck). �

This lemma shows another way to reduce S-4 entailment to 4-entailment.
Note, in particular, that if ϕ is in CNF, then the right-hand side of the reduced 4-
entailment retains CNF form by a little bit of rewriting, as follows: Suppose ϕ =
C1∧...∧Cn. Then we have ϕ∨(c1∨...∨ck) = (C1∨c1∨...∨ck)∧...∧(Cn∨c1∨...∨ck)
which is still in CNF and its size is linear in that of ϕ ∨ (c1 ∨ ... ∨ ck).
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Lemma 21 ([5]) For any propositional knowledge base K in any form and ϕ
in CNF, there exists an algorithm for deciding if K |=4 ϕ in O(|K| · |ϕ|) time.

By Lemmas 20 and 21, we have the following theorem:

Theorem 22 (Complexity) Given a propositional knowledge base K, there ex-
ists an algorithm for deciding if K |=4

S ϕ and deciding if K is S-4 satisfiable in
O(|K||ϕ||S| · 2|S|) and O(|K||S| · 2|S|) time, respectively.

Proof. From Lemma 20, we know that K |=4
S ϕ can be tested by performing 2|S|

times the testing if T |=4 γ, where T has size proportional to the size of |K| and
|γ| is linear in |ϕ||S|. By Lemma 21, we obtain an algorithm with the desired
upper bound.

To decide if K is S-4 satisfiable, note that it holds if and only if K |=4
S f by

Proposition 11. By the algorithm used for S-4 entailment given above and its
complexity together with the fact |f | = 1, the desired complexity bound for S-4
satisfiability is obtained. �

Theorem 22 shows that S-4 entailment and S-4 satisfiability checking can
both be decided in polynomial time w.r.t the size of K, exponential w.r.t that of
S, though. So they can be justified in P-time if |S| is limited by a logarithmic
function of |K|.

Theorem 22 and Theorem 18 together show that for a monotonic sequence
of sets S1,...,Sk, where |Si| < |Si+1| for any 1 ≤ i ≤ k − 1, if we can show
that K is Si-4 (i = 1, ..., k) satisfiable one by one, then we can get a sequence
of decreasing upper bounds of the inconsistency degree of K in O(|K||Si| · 2|Si|)
time. If |Si| = O(log |K|), it is easy to see that the computation of an upper
bound is done in polynomial time with respect to the size of K.

Theorem 22 and Theorem 19 together show that for a monotonic sequence
of sets S1, ..., Sm satisfying |Si| < |Si+1|, if we can prove that K is |Si|-4 unsatis-
fiable6 for each i ∈ [1,m], then we can get a series of increasing lower bounds of

the inconsistency degree of K in O(
(|Var(K)|
|Si|

)
|K||Si| · 2|Si|) time at most. This is

because for each Si, it needs maximal
(|Var(K)|
|Si|

)
times testing of S-4 unsatisfia-

bility. If and only if |Si| is limited by a constant, we have that each lower bound
can be obtained in polynomial time according to Proposition 23 by replacing k
in the proposition with |Si| and replacing n with |Var(K)|.

Proposition 23 Let f(n) = O(2k
(
n
k

)
nk) where 0 ≤ k ≤ n. There exists p ∈ N

such that f(n) = O(np) if and only if k is limited by a constant.

Because of the length of the proof of this proposition, it is given in the appendix.

6 For the sake of simplicity, we say that K is l-4 satisfiable for l ∈ N, if there is a
subset S ⊆ Var(K) such that K is S-4 satisfiable. We say that K is l-4 unsatisfiable
if K is not l-4 satisfiable.
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7 Related Work

Using paraconsistent models for measuring inconsistency has been studied in the
literature [7–9, 13, 14, 26]. These approaches can basically be divided into multi-
valued model based approaches and quasi-classical model based approaches. In
this paper, we mainly studied the four-valued model based approach for mea-
suring inconsistency degrees of arbitrary first-order logic knowledge bases. The
reason why we use four-valued models is that the four-valued semantics for the
whole first-order language can be implemented by a linear reduction to the clas-
sical semantics as shown in Theorem 3. While for the quasi-classical logic, this
is only achieved when restricted to knowledge bases in CNF because the reduc-
tion of the QC semantics for the whole language is still an open problem [24].
This property of the four-valued semantics is useful for the algorithmic aspect
of computing inconsistency degrees.

Restricted to multi-valued semantics, there are still some alternatives ways
to define inconsistency measures for first-order logic. They differ in how they
deal with different domain sizes of the paraconsistent models when defining in-
consistency degrees, which is a core design decision required due to the presence
of variables in first-order logic. Our definition follows the approach in [8] which
defines the inconsistency measure as a sequence of inconsistency degrees. Each
inconsistency degree is defined with respect to a specific finite domain. In [9], for
a set of domains, three sorts are distinguished to define an inconsistency mea-
sure, named the bounded frame, the unbounded frame, and the infinite frame.
While the inconsistency measure defined w.r.t bounded frame is the simplest
case, the one defined w.r.t. unbounded frame is more related to our definition.
Suppose that our inconsistency measure is 〈r1, r2, ..., rn, ...〉. In fact, the incon-
sistency measure defined in [9] is the limit of the sequence of our inconsistency
degrees (i.e. limi→∞ ri). One of the significant results obtained in [9] is that the
limit exists and can be expressed in the form of a special function. However,
how to compute that function is not given for a general first-order knowledge
base in [9]. Our result shows a way to compute each rn which provides a way
to approximately compute the inconsistency measure limi→∞ ri. The inconsis-
tency measure defined w.r.t. an infinite frame allows to consider any infinite do-
main. However, the values obtained in this case are binary ({∞>,∞⊥}) which is
not fine-grained enough to distinguish between different inconsistent knowledge
bases.

Compared to the existing work which mainly studies inconsistency measures
for propositional knowledge bases, the work [7–9] and ours are about first-order
knowledge bases. To the best of our knowledge, this paper is the first work
that explores the computation of both precise and approximating inconsistency
degrees.

8 Discussions and Future Work

In this paper, we studied the computational aspects of calculating the sequence
of inconsistency degrees of a first-order knowledge base. By the proposed S[n]-4
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semantics, we explored an algorithm to compute precise inconsistency degrees
by invoking a SAT solver, and then a way to compute approximating inconsis-
tency degrees. In particular, we studied a theoretically tractable approach to
computing approximating inconsistency degrees.

The computation of the inconsistency degree sequence 〈r1, ..., rn, ...〉 of a
first-order knowledge base Γ can be achieved using Algorithm 1. However, a
practical problem is that the infinitary definition of IncMea(Γ ) makes it impos-
sible to obtain the exact value of IncMea(Γ ) in finite time. We can however set
a termination condition in order to guarantee that an answer will be obtained.
Assume time (resource) is used up, a possible way is to use the already obtained
partial sequence 〈r1, ..., rn〉 as an approximating value of IncMea(Γ ). This point
causes the consideration of defining inconsistency degree in other ways, which is
among our future work.

Our approach can be extended to compute other notions of inconsistency
degrees, such as the one based on the quasi-classical (QC for short) semantics
[13], as follows. Define an S[n]-QC semantics similar to Definitions 11, 12, and
13 by replacing the corresponding four-valued semantics by QC semantics. Then
check that the computation of inconsistency degrees can be reduced to S[n]-QC
satisfiability (similar to Theorem 14). Next, make sure that S[n]-QC satisfiabil-
ity can be simulated by QC entailment (similar to Theorem 12) and then be
reduced to classical entailment, which holds by [24]. This way, we can compute
the inconsistency degree defined by the QC semantics by invoking an SAT solver.

In the future, we will also work on developing a framework to combine dif-
ferent kinds of inconsistency handling approaches based on the computation of
inconsistency degrees.
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Appendix. Proof of Proposition 23

Proof. Sufficiency is obvious. We prove necessity which includes two steps:

1. We prove that by the condition of the proposition, limn→∞
k(n)
n must exist

and be zero (i.e. limn→∞
k(n)
n = 0).

2. Based on limn→∞
k(n)
n = 0, we prove that limn→∞ k(n) 6= ∞ which is the

conclusion.

Both of the these two claims are proven by contradiction. To this end, we need
to rewrite A(n) by Stirling’s formula7:

n! =
√

2πn
(n
e

)n
e

θ
12n , 0 < θ < 1.

We have

A(n) =

(
n

k(n)

)
2k(n) =

e
θ1
12n−

θ2
12(n−k(n))

− θ3
12k(n)

(n− k(n))n−k(n)k(n)k(n)

√
n

(n− k(n))k(n)

2k(n)nn√
2π

,

7 See e.g. V.A. Zorich, Mathematical Analysis, Springer, 2004, Section 17.3.5
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where 0 < θi < 1 for i = 1, 2, 3. Denote B(n) = 2k(n)nn

(n−k(n))n−k(n)k(n)k(n) . Obviously,

we have

C1
1

n
B(n) ≤ A(n) ≤ C2nB(n), (3)

where C1, C2 are two positive constants. We consider the limit

lim sup
n→∞

k(n)

n
.

Now we prove the first claim, that is, by the condition that A(n) is the same

order with some polynomial about n (i.e., A(n) = O(n)), limn→∞
k(n)
n must

exist and be zero. Otherwise, suppose the subsequence {ni}∞i=1 of N satisfies

lim
i→∞

k(ni)

ni
= lim sup

n→∞

k(n)

n
= β > 0.

Obviously, 0 < β ≤ 1. By this assumption, for any p ∈ N, we have

lim
i→∞

(ln 2 · k(ni)− p lnni) = lim
i→∞

[ln(ni) · (ln 2 · k(ni)

lnni
− p)] =∞,

which implies limi→∞
B(ni)
npi

=∞. By Inequation 3, we have limi→∞
A(ni)
npi

=∞
which contradicts the assumption that A(n) = O(n). We have proved this claim.

Secondly, we prove that limn→∞ k(n) 6=∞. Otherwise, assume limn→∞ k(n) =
∞. Since A(n) = O(n) and by Inequation 3, there exists p ∈ N and a positive
constant C3 such that

0 ≤ lim inf
n→∞

B(n)

np
≤ lim sup

n→∞

B(n)

np
≤ C3.

Now we select a subsequence {ni}∞i=1 of N that satisfies

lim
i→∞

B(ni)

npi
= lim sup

n→∞

B(n)

np
≤ C3,

if and only if
lim
i→∞

(ln(B(ni))− p ln(ni)) ≤ ln(C3),

if and only if

lim
i→∞
{k(ni)(ln(2ni)− ln(k(ni))) +

ni − k(ni)

ni
· k(ni) · ln[(1− k(ni)

ni
)
− ni
k(ni) ]

− p ln(ni)} ≤ ln(C3). (4)

By dividing k(ni) on both sides of the inequation above and by the fact that

limn→∞
k(n)
n = 0 and the assumption limn→∞ k(n) =∞, we have

lim
i→∞

(
p

k(ni)
ln(ni) + ln(k(ni))− ln(ni)) ≥ 1 + ln 2,
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that is

lim
i→∞

ln(
n

p
k(ni) k(ni)

ni
) ≥ ln 2e. (5)

As limn→∞
k(n)
n = 0, by equation 5 we have limi→∞ n

p
k(ni)

i = ∞. So we have

limi→∞
k(ni)
p lnni

= 0. This implies that for any α > 0, we have

lim
i→∞

k(ni)

nαi
= 0. (6)

If we calculate Inequation 4 again carefully, we obtain

lim
i→∞
{k(ni)(ln

2ni
k(ni)

+
ni − k(ni)

ni
ln[(1− k(ni)

ni
)
− ni
k(ni) ])−p ln(ni)} ≤ ln(C3). (7)

Let k(ni)
ni

= x and f(x) , x−1
x ln(1−x) = ni−k(ni)

ni
ln[(1− k(ni)ni

)
− ni
k(ni) ]. Obviously,

x is very small when i is big enough. By Taylor’s formula with the Peano form
of the remainder ln(1−x) = −x− 1

2x
2 +O(x3), we have f(x) = 1− 1

2x+O(x2).
So we obtain

ni − k(ni)

ni
ln[(1− k(ni)

ni
)
− ni
k(ni) ]− 1 = (−1

2
+ o(1)) · k(ni)

ni
. (8)

Then by Inequation 7 and Equation 8 we have

lim
i→∞
{k(ni)(ln

2ni
k(ni)

+ 1 + (−1

2
+ o(1)) · k(ni)

ni
)− p ln(ni)} ≤ ln(C3).

By Equation 6, let α = 1
2 , and we have

lim
i→∞
{k(ni) ln

2eni
k(ni)

− p ln(ni)− ln(C3)} ≤ 0.

That is,

lim
i→∞
{ (2e)k(ni)

C3n
p
i

·
(ni
ki

)k(ni)} ≤ 1,

which further requires

lim
i→∞
{ (2e)k(ni)

C3
·
(n k(ni)−pk(ni)

i

k(ni)

)k(ni)} ≤ 1.

But this is impossible by Equation 6 and our assumption that limn→∞ k(n) =∞.
Therefore, we have limn→∞ k(n) < ∞, which is the conclusion we wanted to
prove. �
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