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Abstract. With the development of more expressive description logics
(DLs) for the Web Ontology Language OWL the question arises how
we can properly deal with the high computational complexity for effi-
cient reasoning. In application cases that require scalable reasoning with
expressive ontologies, non-standard reasoning solutions such as approx-
imate reasoning are necessary to tackle the intractability of reasoning
in expressive DLs. In this paper, we are concerned with the approxima-
tion of the reasoning task of instance retrieval on DL knowledge bases,
trading correctness of retrieval results for gain of speed. We introduce
our notion of an approximate concept extension and we provide imple-
mentations to compute an approximate answer for a concept query by
a suitable mapping to efficient database operations. Furthermore, we re-
port on experiments of our approach on instance retrieval with the Wine
ontology and discuss first results in terms of error rate and speed-up.

1 Introduction

For description logics, there are two main approaches to reasoning. Tableaux-
based methods [1] implemented in tools such as Pellet [2] and Racer [3] have been
shown to be efficient for complex TBox reasoning tasks with expressive DLs. In
contrast, the reasoning techniques based on reduction to disjunctive datalog as
implemented in KAON2 [4] scale well for large ABoxes, with support for the DL
SHIQ. Besides these two directions, other approaches such as rule engines and
database-based techniques scale very well for large ABoxes, but are in principle
limited to lightweight language fragments [5].

Observing the application domain of these approaches, an issue which re-
mains to be investigated is the problem of scalable reasoning over expressive
ontologies with large ABoxes as well as complex or large TBoxes. From a theo-
retical point of view we know that it is impossible to find any tractable algorithm
for reasoning over expressive ontologies due to the underlying high computa-
tional complexities [6]. Thus, non-standard reasoning solutions like approximate
reasoning [7, 8] are helpful in time-critical applications when it is acceptable to
sacrifice soundness or completeness for increased efficiency. Approximate rea-
soning algorithms can be tractable although the underlying language is not, in
contrast to limiting attention only to inexpressive tractable fragments as e.g. [9].
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Investigations into approximate reasoning usually start from a sound and
complete algorithm and system and directly addresses performance bottlenecks
in order to improve efficiency, i.e. the algorithms are altered, leading to approx-
imate outputs, while improving speed and keeping the introduced error ratio as
low as possible.

In previous work [10, 11] we have shown how to approximate instance re-
trieval for named classes within the KAON2 approach. In this paper we show
how instance retrieval for complex classes can be approximated by reducing it
to instance retrieval for named classes. For this, we compute what we call ap-
proximate extensions of complex classes by means of combining extensions of
named classes, e.g. by using standard database operations. The approach leads
to a speedup of about factor 10, while the number of introduced errors varies
depending on the query, but is within reasonable bounds.

The present paper is structured as follows. After recalling necessary prelimi-
naries, we will present our approach to approximate instance retrieval, and then
describe our approximate algorithms. We conclude by reporting on correspond-
ing evaluation results and with ideas for further work. For a more elaborate
version of this paper we refer to our technical report [16].

2 Preliminaries

Description Logics. Description logics (DLs) are a family of knowledge repre-
sentation formalisms. The basic constituents to represent knowledge in DLs are
concepts C, roles r and individuals a. They are used to form axioms collected in
a knowledge base KB to make statements about a domain of interest. We primar-
ily consider the DL SHIQ with concept and role assertion axioms of the form
C(a), r(a, b) that assign an individual to a concept or relate two individuals via
a role, and concept inclusion axioms of the form C v D that state subclass rela-
tionships. For a detailed presentation of DLs we refer to [12]. The signature of a
knowledge base KB, denoted by σ(KB), is the set of all individual, concept and
role names that occur in the axioms within KB. In particular, σ(KB) comprises
all individuals occurring in KB.

Instance retrieval with DL knowledge bases builds on the standard reasoning
task of instance checking. An individual a ∈ σ(KB) is an instance of a concept C
with respect to a knowledge base KB if the axiom C(a) is a logical consequence
of KB, which is denoted by KB |= C(a). Instance retrieval can be interpreted
as the repeated application of instance checking for all known individuals of KB
and a given concept. We call the result of retrieving all instances of concept C
from KB the (conventional) extension of C with respect to KB, denoted by |C|,
and define it as follows.3

|C| := {x ∈ σ(KB) | KB |= C(x)}
In the context of instance retrieval, the concept C is often also called the query.
3 Notice that this notion of extension refers to a particular knowledge base and is

different from the model-theoretic notion of extension defined for an interpretation.



Relational Algebra. Relational Algebra is the formal underpinning of modern
relational database systems and is used to formalise database operations on the
relational model originally introduced by Codd [13]. The main construct for
representing data in the relational model is a relation, denoted by R(a1, . . . , an),
that represents a database table with column attributes a1 to an and rows that
instantiate the columns as tuples of values. Relational algebra expressions are
used to formulate queries on the thus represented database tables and result
themselves in relations, such that expressions can be nested. Attributes in a
relation can be referred to by means of path expressions of the form R . ai, e.g.
within conditions.

We briefly recall the relational operators that are used in this paper. A pro-
jection π[a1,...,am](R(a1, . . . , an)) restricts the columns of the resulting relation
to the attributes a1, . . . , am for m < n. A selection σ[condition](R(a1, . . . , an))
selects those rows for which condition holds. A cross product R1(a1, . . . , an)×
R2(b1, . . . , bm) generates a combined relation R(a1, . . . , an, b1, . . . bm) in the sense
of the Cartesian product by multiplying rows, which is used for join operations.
Other set operations are used for relations as usual, namely union R1 ∪R2, in-
tersection R1 ∩ R2 and difference R1 \ R2, operating on relation tuples in the
usual way. For a detailed description of relational algebra see e.g. [14].

3 Approximation of Instance Retrieval

Our approach for the approximation of instance retrieval queries is based on the
notion of the approximate extension 〈C〉 of a concept C with respect to a knowl-
edge base KB. Intuitively, 〈C〉 is the set of instances that are obtained through
interpreting complex concepts in C as simple set operations on the individuals
known to KB, starting from the atomic extensions of concepts and roles that oc-
cur in C. In this way, the model-theoretic semantics of DLs is approximated by a
straightforward combination of results for atomic queries that requires less effort
to compute than the reasoning process for complex instance retrieval queries in
DLs does. The exact definition of an approximate extension is given in Table 1
recursively for all language constructs. For an example, consider the knowledge
base KB = {C v A t B, A(a1), C(a2)} and the instance retrieval query A t B.
The conventional extension of the concept A t B contains both individuals a1

and a2, i.e. |A tB| = {a1, a2}. However, the approximate extension of A t B
contains only a1, i.e. 〈A tB〉 = {a1}.

The more complex the query concept C is, the more the approximate exten-
sion deviates from the conventional extension. For the simplest queries, such as
atomic concepts, the two types of extensions coincide and no errors are made in
instance retrieval. This characteristics is captured by the following proposition.

Proposition 1 (soundness and completeness of simple approximate
extensions). For a knowledge base KB and a concept C of the form C =
A1 u · · · u Am u ¬B1 u . . .¬Bn, with all Ai and Bj atomic, the approximate
extension of C is equivalent to its conventional extension, i.e. 〈C〉 = |C|.



Table 1. Definition of an approximate extension. A stands for atomic classes and C,D
for complex (non-atomic) classes. R stands for roles and n for a natural number.

Approximate Extensions

〈>〉 = |>|
〈⊥〉 = ∅
〈A〉 = |A|
〈¬A〉 = |¬A|
〈R〉 = {(x, y) | KB |= r(x, y)}
〈R−〉 = {(x, y) | KB |= r(y, x)}

〈C uD〉 = 〈C〉 ∩ 〈D〉
〈C tD〉 = 〈C〉 ∪ 〈D〉
〈¬C〉 = 〈>〉 \ 〈C〉

〈∃R.C〉 = {x ∈ 〈>〉 | ∃y : (x, y) ∈ 〈r〉 ∧ y ∈ 〈C〉}
〈∀R.C〉 = {x ∈ 〈>〉 | ∀y : (x, y) ∈ 〈r〉 → y ∈ 〈C〉}

〈≤ n R.C〉 = {x ∈ 〈>〉 | #{y | (x, y) ∈ 〈r〉 ∧ y ∈ 〈C〉} ≤ n}
〈≥ n R.C〉 = {x ∈ 〈>〉 | #{y | (x, y) ∈ 〈r〉 ∧ y ∈ 〈C〉} ≥ n}

Proposition 1 states that, for queries that have the form of conjunctions of
possibly negated named concepts, the approximate and conventional extensions
have exactly the same instances. In other words, computing the approximate
extension is sound and complete with respect to the conventional extension.

For more complex queries, however, the approximation might deviate signif-
icantly from the correct answer in both that it might miss instances as well as
show improper instances. In particular the approximation of the complement
constructor is supposed to cause significant deviation as it interprets negation
in a closed-world sense, potentially including improper instances in an answer.
Hence, we aim at eliminating general complements by means of normalisation,
avoiding this source of error.

For standard reasoning in DLs a query concept can be expressed in various
normal forms and semantics-preserving transformations do not affect the result
of instance retrieval. For the calculation of approximate extensions, however, the
result depends on the form of the concept, and different semantically equivalent
concept expressions can have different approximate extensions. We can exploit
this characteristics by choosing a normal form for query concepts that fits best
the process of approximation in terms of both error rate and ease of computation.
In this light, we consider the negation normal form [15] of concept expressions
for queries, denoted by NNF(C) for a concept C, in which negation symbols are
pushed inside to occur only in front of atomic concepts. This eliminates the case
of considering the approximation for general complements with its rather drastic
closed-world interpretation. Besides the lower expected error rate this also avoids
the computationally costly handling of large sets of individuals in case of large
ABoxes by an algorithm that computes approximate extensions. The positive
effect that elimination of complement approximation has on the error rate in
instance retrieval can be expressed by the following property, which ensures that



approximation of concepts in negation formal form only gives up completeness
but preserves soundness at least for a certain class of queries.

Proposition 2 (soundness of limited approximate instance retrieval).
Let KB be a knowledge base and C be a concept such that NNF(C) contains
no ∀- and no ≤- and ≥-constructs. The approximate extension of NNF(C) only
contains instances that are also contained in the conventional extension of C
with respect to KB, i.e. 〈NNF(C)〉 ⊆ |C|.
Proposition 2 states that, for queries that do not make use of the ∀, ≥ and
≤ constructs (after normalisation), the approach of approximating concepts in
their negation normal form yields an extension that might miss some instances
but has no improper instances in it. In other words, computing the approximate
extension is sound with respect to the conventional extension.

4 Computing Approximate Extensions

In this section, we will present algorithms for computing the approximate ex-
tension of a query concept. We will lay out the architecture of a system for
approximate instance retrieval and elaborate on two implementations of the al-
gorithms, one in a database and one in memory.

4.1 System Architecture

Our system for approximate instance retrieval takes as input a SHIQ4 knowl-
edge base KB and a complex query concept Q to compute the approximate
extension of Q with respect to KB as a set of individuals. This is depicted on
the right-hand side of Figure 1. The principle behind computing 〈Q〉 is always to
start from the individuals in the conventional extensions of (possibly negated)
atomic concepts and (possibly inverse) roles that occur in Q and to recursively
combine these according to the structure of concepts in Q, reflecting the set
operations from Table 1. According to Propositions 1 and 2, this results in an
answer that is sound and complete for some cases, only sound for others, or
neither sound nor complete, depending on the language constructs used in the
query.

We have implemented the approximate instance retrieval method in two
different ways and distinguish between database and in-memory computation:
in the first case computation is delegated to underlying database operations,
whereas in the second case it is performed in main memory. While for the
database variant the atomic extensions are pre-computed prior to query-time and
materialised in the database using a sound and complete reasoner, the in-memory
variant allows for two possibilities to access the atomic extensions: in online pro-
cessing a sound and complete DL reasoner is invoked at query-time to compute
4 We use SHIQ since we build on KAON2 for our experimental results. However, our

approximation approach can easily be extended to nominals, the missing feature for
handling OWL ontologies.



Fig. 1. An overview of the system architecture

atomic extensions, while in offline processing they are again pre-computed and
materialised either in a database or in memory if possible. Database computa-
tion and offline processing are very useful when dealing with large amounts of
data in scenarios with frequent querying on rather static ontologies, for which
materialisation can be done in advance. Online processing is intended to be used
in such cases where a materialisation is hardly manageable as ontologies are
subject to frequent changes.

For online processing we utilise the KAON2 reasoner, as illustrated in Figure
1. The reason for this choice is that KAON2 was designed to be an efficient
ABox reasoner on knowledge bases with large ABoxes and simple TBoxes in
comparison to other state-of-art DL reasoners, which typically perform better on
knowledge bases with large (or complex) TBoxes and small ABoxes. As depicted
on the left-hand side of Figure 1, KAON2 transforms the TBox together with
complex queries into a disjunctive datalog program in a first step, to perform
ABox reasoning in a second step based on the result of this transformation.
Hence, for every complex ABox query KAON2 needs to repeatedly perform the
TBox transformation, which is computationally costly. For ABox queries that
have the form of atomic concepts, however, this transformation is not necessary
and can be bypassed. For the variant with in-memory and online processing
we can take advantage of this because for computing atomic extensions with
KAON2 the costly TBox translation is saved.

4.2 Delegation of Computation to Database

The variant that performs database computation is a presumably efficient im-
plementation of approximate instance retrieval as the pre-computed atomic ex-
tensions are materialised and approximate extensions are computed by making
use of highly optimised database operations. This variant is essential in practice
for handling ontologies with large ABoxes that cannot be processed efficiently



Concept Expression Relational Algebra Expression

τdb(A) π[ind](σ[class=A](ExtC))

τdb(¬A) π[ind](σ[class=¬A](ExtC))

τdb(∃r.C) EC := τdb(C)
Er := σ[role=r](Extr)
π[ind1](σ[ind=ind2](EC × Er))

τdb(∀r.C) EC := τdb(C)
Er := σ[role=r](Extr)
E := π[ind1](σ[ind6=ind2](EC × Er))
π[ind1](ExtC) \ E

τdb(≤ n R.C) EC := τdb(C)
Er := σ[role=r](Extr)
π[ind](σ[count(ind1)≤n ∧ ind=ind2](EC × Er))

τdb(≥ n R.C) EC := τdb(C)
Er := σ[role=r](Extr)
π[ind](σ[count(ind1)≥n ∧ ind=ind2](EC × Er))

τdb(C0 u C1 u · · · u Cn) τdb(C0) ∩ τdb(C1) ∩ · · · ∩ τdb(Cn)

τdb(C0 t C1 t · · · t Cn) τdb(C0) ∪ τdb(C1) ∪ · · · ∪ τdb(Cn)

Table 2. Mapping of DL concept expression to Relational Algebra Expression

in memory. Here, the recursive combination of atomic extensions in terms of
set operations as defined in Table 1 is completely delegated to the underlying
database, which benefits performance. As a basis for this form of computation we
use a database schema that consists of two Relations, namely ExtC(ind, class)
for storing concept extensions and Extr(ind1, role, ind2) for storing role exten-
sions. In their schema, the attribute ind(i) stands for individual names, class for
names of possibly negated concepts and role for names of possibly inverse roles.
Starting from a knowledge base KB, these two relations are initialised as follows.

ExtC(ind, class) = {(a,C) | KB |= C(a)}, for C = A | ¬A with A ∈ σ(KB)
Extr(ind1, role, ind2) = {(a, r, b) | KB |= r(a, b)}, for r = p | p− with p ∈ σ(KB)

Notice that, for the purpose of approximate instance retrieval, ExtC and Extr

form a complete representation of the original knowledge base KB.

A complex query concept Q is answered by transforming its negation normal
form NNF(Q) into a relational algebra expression according to a mapping τdb

and posed as a query to the underlying database system. The complete map-
ping definition for τdb is given in Table 2. The left-hand side shows the concept
constructors that can occur in NNF(Q) and the right-hand side shows their re-
spective relational algebra expression. Recursive application of τdb ultimately
produces a single database query τdb(NNF(Q)) that is used for computing 〈Q〉.



For an example consider the query Q = Au∃r.¬B. The mapping τdb produces
the following nested relational algebra expression.

τdb(Q) = π[ind](σ[class=A](ExtC))∩
π[ind1](σ[ind=ind2](σ[role=r](Extr)× π[ind](σ[class=¬B](ExtC)))) .

When posed to the underlying database, this rather large expression is subject
to efficient internal query optimisation strategies as they are typically employed
by database systems.

4.3 In-memory Computation

Both the variants with online and offline processing share the same implemen-
tation of the approximate algorithm. The difference is the handling of atomic
extensions which is presented by an additional function. This function takes as
parameters a knowledge base and an atomic concept or atomic role for which
the atomic extension is to be computed while the actual algorithm accepts the
knowledge base and a complex concept query for which the approximate exten-
sion is to be computed. For the computation of the atomic extension, depending
on the chosen variant, the introduced function invokes either a complete and
sound reasoner or retrieves the atomic extension from the database. For the
exact details of this algorithm, the interested reader may refer to [16].

5 Conclusion

In our experiments, using the WINE ontology, which has been designed as a
showcase for the expressivity of OWL, we compared our algorithms with KAON2
as a sound and complete DL reasoner. Running the approximation algorithm in
the database variant, we obtained a significant performance improvement for
each ∃-query5 about 90%. Running the algorithm in offline processing where
the approximation is computed in memory, we obtained another significant per-
formance gain, indeed about 99% compared to KAON2. For the details of our
experiments including complex queries, the interested reader may refer to [16].

We have presented an approach to approximate instance retrieval based on
approximate extensions. Compared with a complete and sound DL reasoner, our
approach can significantly improve the performance of reasoning over expressive
ontologies with large ABoxes and TBoxes. We presented several instantiations
of our approach resulting online and offline in-memory and database variants.
We evaluated the approaches and showed that a significant speed-up of around
90% can be obtained while the number of introduced errors remains relatively
small.

Future work includes improvements on the online variant using logic pro-
gramming engines, further experiments for complex queries, combinations with
other approximate reasoning methods, extension to more expressive language
features and applications of our approach in suitable use case scenarios.
5 queries of the form ∃r.A where A is a named class and r is a role
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