
Integrating First-Order Logic Programs and Connectionist Systems —
A Constructive Approach

Sebastian Bader1∗, Pascal Hitzler2†, Andreas Witzel3
1International Center for Computational Logic, Technische Universität Dresden, Germany

2AIFB, Universität Karlsruhe, Germany
3Department of Computer Science, Technische Universität Dresden, Germany

Abstract
Significant advances have recently been made con-
cerning the integration of symbolic knowledge rep-
resentation with artificial neural networks (also
called connectionist systems). However, while the
integration with propositional paradigms has re-
sulted in applicable systems, the case of first-order
knowledge representation has so far hardly pro-
ceeded beyond theoretical studies which prove the
existence of connectionist systems for approximat-
ing first-order logic programs up to any chosen pre-
cision. Advances were hindered severely by the
lack of concrete algorithms for obtaining the ap-
proximating networks which were known to ex-
ist: the corresponding proofs are not construc-
tive in that they do not yield concrete methods for
building the systems. In this paper, we will make
the required advance and show how to obtain the
structure and the parameters for different kinds of
connectionist systems approximating covered logic
programs.

1 Introduction
Logic programs have been studied thoroughly in computer
science and artificial intelligence and are well understood.
They are human-readable, they basically consist of logic
formulae, and there are well-founded mathematical theories
defining exactly the meaning of a logic program. Logic pro-
grams thus constitute one of the most prominent paradigms
for knowledge representation and reasoning. But there is also
a major drawback: Logic programming is unsuitable for cer-
tain learning tasks, in particular in the full first-order case.

On the other hand, for connectionist systems — also called
artificial neural networks — there are established and rather
simple training or learning algorithms. But it is hard to
manually construct a connectionist system with a desired be-
haviour, and even harder to find a declarative interpretation of

∗Sebastian Bader is supported by the GK334 of the German Re-
search Foundation (DFG).

†Pascal Hitzler is supported by the German Federal Ministry of
Education and Research (BMBF) under the SmartWeb project, and
by the European Union under the KnowledgeWeb Network of Ex-
cellence.

what a given connectionist system does. Connectionist sys-
tems perform very well in certain settings, but in general we
do not understand why or how.

Thus, logic programs and connectionist systems have con-
trasting advantages and disadvantages. It would be desirable
to integrate both approaches in order to combine their respec-
tive advantages while avoiding the disadvantages. We could
then train a connectionist system to fulfil a certain task, and
afterwards translate it into a logic program in order to under-
stand it or to prove that it meets a given specification. Or we
might write a logic program and turn it into a connectionist
system which could then be optimised using a training algo-
rithm.

Main challenges for the integration of symbolic and con-
nectionist knowledge thus centre around the questions (1)
how to extract logical knowledge from trained connectionist
systems, and (2) how to encode symbolic knowledge within
such systems. We find it natural to start with (2), as extrac-
tion methods should easily follow from successful methods
for encoding.

For propositional logic programs, encodings into connec-
tionist systems like [11] led immediately to applicable algo-
rithms. Corresponding learning paradigms have been devel-
oped [7; 6] and applied to real settings.

For the first-order logic case, however, the situation is
much more difficult, as laid out in [4]. Concrete translations,
as in [3; 2], yield nonstandard network architectures. For
standard architectures, previous work has only established
non-constructive proofs showing the existence of connection-
ist systems which approximate given logic program with arbi-
trary precision [12; 9]. Thus the implementation of first-order
integrated systems was impossible up to this point.

In this paper, we will give concrete methods to compute the
structure and the parameters of connectionist systems approx-
imating certain logic programs using established standard ar-
chitectures.

First, in Section 2, we will give a short introduction to
logic programs and connectionist systems. We also review
the standard technique for bridging the symbolic world of
logic programs with the real-numbers-based world of connec-
tionist systems, namely the embedding of the single-step op-
erator, which carries the meaning of a logic program, into the
real numbers as established for this purpose in [12]. In Sec-
tion 3, we will then approximate the resulting real function by

a piecewise constant function in a controlled manner, which is
an important simplifying step for establishing our results. We
will then construct connectionist systems for computing or
approximating this function, using sigmoidal activation func-
tions in Section 4 and radial basis function (RBF) architecture
in Section 5. Section 6 will conclude the paper with a short
discussion of some open problems and possibilities for future
work.

2 Preliminaries
In this section, we shortly review the basic notions needed
from logic programming and connectionist systems. Main
references for background reading are [13] and [14], respec-
tively. We also review the embedding of TP into the real
numbers as used in [12; 9], and on which our approach is
based.

2.1 Logic Programs
A logic program over some first-order language L is a set of
(implicitly universally quantified) clauses of the form A ←
L1 ∧ · · · ∧ Ln, where n ∈ N may differ for each clause, A
is an atom in L with variables from a set V, and the Li are
literals in L, that is, atoms or negated atoms. A is called the
head of the clause, the Li are called body literals, and their
conjunction L1 ∧ · · · ∧ Ln is called the body of the clause.
As an abbreviation, we will sometimes replace L1 ∧ · · · ∧Ln

by body and write A ← body . If n = 0, A is called a fact.
A clause is ground if it does not contain any variables. Local
variables are those variables occurring in some body but not
in the corresponding head. A logic program is covered if none
of the clauses contain local variables.

Example 2.1. The following is a covered logic program
which will serve as our running example. The intended mean-
ing of the clauses is given to the right.

e(0). % 0 is even

e(s(X))← ¬e(X) % the successor s(X)

% of a non-even X is even

The Herbrand universe UP is the set of all ground terms
of L, the Herbrand base BP is the set of all ground atoms. A
ground instance of a literal or a clause is obtained by replac-
ing all variables by terms from UP . For a logic program P ,
G(P) is the set of all ground instances of clauses from P .

A level mapping is a function ‖ · ‖ : BP → N \ {0}. In
this paper, we require level mappings to be injective, in which
case they can be thought of as enumerations of BP . The level
of an atom A is denoted by ‖A‖. The level of a literal is that
of the corresponding atom.

A logic program P is acyclic with respect to a level map-
ping ‖ · ‖ if for all clauses A ← L1 ∧ · · · ∧ Ln ∈ G(P)
we have that ‖A‖ > ‖Li‖ for 1 ≤ i ≤ n. A logic
program is called acyclic if there exists such a level map-
ping. All acyclic programs are also covered under our stand-
ing condition that level mappings are injective, and provided
that function symbols are present, i.e. BP is infinite. In-
deed the case when BP is finite is of limited interest to us
as it reduces to a propositional setting as studied in [11;
7].

Example 2.2. For the program from Example 2.1, we have:
UP = {0, s(0), s2(0), . . . }

BP = {e(0), e(s(0)), e(s2(0)), . . . }

G(P) = e(0).

e(s(0))← ¬e(0).

e(s2(0))← ¬e(s(0)).

...
With ‖e(sn(0))‖ := n + 1, we find that P is acyclic.

A (Herbrand) interpretation is a subset I of BP . Those
atoms A with A ∈ I are said to be true, or to hold, under I
(in symbols: I |= A), those with A 6∈ I are said to be false,
or to not hold, under I (in symbols: I 6|= A). IP = 2BP is
the set of all interpretations.

An interpretation I is a (Herbrand) model of a logic pro-
gram P (in symbols: I |= P) if I is a model for each clause
A← body ∈ G(P) in the usual sense. That is, if of all body
literals I contains exactly those which are not negated (i.e.
I |= body), then I must also contain the head.
Example 2.3. Consider these three Herbrand interpretations
for P from Example 2.1:

I1 = {e(0), e(s(0))}

I2 = {e(0), e(s3(0)), e(s4(0)), e(s5(0)), . . . }

I3 = {e(0), e(s2(0)), e(s4(0)), e(s6(0)), . . . }

I4 = BP

I1 6|= P since e(s3(0))← ¬e(s2(0)) ∈ G(P) and e(s2(0)) 6∈
I1, but e(s3(0)) 6∈ I1. I2 is neither a model (for a similar
reason). Both I3 and I4 are models for P .

The single-step operator TP : IP → IP maps an interpre-
tation I to the set of exactly those atoms A for which there
is a clause A ← body ∈ G(P) with I |= body. The
operator TP captures the semantics of P as the Herbrand
models of the latter are exactly the pre-fixed points of the
former, i.e. those interpretations I with TP (I) ⊆ I . For
logic programming purposes it is usually preferable to con-
sider fixed points of TP , instead of pre-fixed points, as the
intended meaning of programs. These fixed points are called
supported models of the program [1]. The well-known stable
models [8], for example, are always supported. In example
2.1, I3 = {e(0), e(s2(0)), e(s4(0)), . . . } is supported (and
stable), while I4 = BP is a model but not supported.
Example 2.4. For P from Example 2.1 and I1, I2 from Ex-
ample 2.3, we get the following by successive application (i.e.
iteration) of TP :

I1
TP7→ I2

TP7→ {e(0), e(s2(0)), e(s3(0))}
TP7→ . . .

TP7→ {e(0), e(s2(0)), . . . , e(s2n(0)), e(s2n+1(0))}
TP7→ . . .

For a certain class of programs, the process of iterating TP

can be shown to converge1 to the unique supported Herbrand
1Convergence in this case is convergence with respect to the Can-

tor topology on IP , or equivalently, with respect to a natural under-
lying metric. For further details, see [10], where also a general class
of programs, called Φ-accessible programs, is described, for which
iterating TP always converges in this sense.

...

Figure 1: A simple 3-layered feed-forward connectionist sys-
tem, with different activation functions depicted in the hidden
layer.

model of the program, which in this case is the model de-
scribing the semantics of the program [10]. This class is de-
scribed by the fact that TP is a contraction with respect to
a certain metric. A more intuitive description remains to be
found, but at least all acyclic programs2 are contained in this
class. That is, given some acyclic program P , we can find its
unique supported Herbrand model by iterating TP and com-
puting a limit. In example 2.4 for instance, the iterates con-
verge in this sense to I3 = {e(0), e(s2(0)), e(s4(0)), . . . },
which is the unique supported model of the program.

2.2 Connectionist Systems

A connectionist system — or artificial neural network — is a
complex network of simple computational units, also called
nodes or neurons, which accumulate real numbers from their
inputs and send a real number to their output. Each unit’s
output is connected to other units’ inputs with a certain real-
numbered weight. We will deal with feed-forward networks,
i.e. networks without cycles, as shown in Figure 1. Each unit
has an input function which merges its inputs into one in-
put using the weights, and an activation function which then
computes the output. If a unit has inputs x1, . . . , xn with
weights w1, . . . , wn, then the weighted sum input function
is
∑n

i=1 xiwi. A locally receptive distance input function
is
√∑n

i=1(xi − wi)2. In the case of one single input, this
is equivalent to |x1 − w1|. Those units without incoming
connections are called input neurons, those without outgoing
ones are called output neurons.

2.3 Embedding TP in R

As connectionist systems propagate real numbers, and single-
step operators map interpretations, i.e. subsets of BP , we
need to bridge the gap between the real-valued and the sym-
bolic setting. We follow the idea laid out first in [12], and
further developed in [9], for embedding IP into R. For this
purpose, we define R : IP → R as R(I) :=

∑

A∈I b−‖A‖

for some base b ≥ 3. Note that R is injective. We will ab-
breviate R({A}) by R(A) for singleton interpretations. As
depicted in Figure 2, we obtain fP as an embedding of TP in
R : fP : Df → Df with Df := {R(I)|I ∈ IP }, is defined as
fP (x) := R(TP (R−1(x))). Figure 3 shows the graph of the

2In this case the level mapping does not need to be injective.

I ∈ IP
TP

// I ′ ∈ IP

R

��
x ∈ Df

fP //

R−1

OO

x′ ∈ Df

Figure 2: Relations between TP and fP

0.5

0.2

0.45

0.1

0.4

0.35

0 0.50.40.3
R(I)

fP (R(I))

Figure 3: The graph of the embedded TP -operator from Ex-
ample 2.1, using base 3 for the embedding. In general, the
points will not be on a straight line.

embedded TP -operator associated to the program discussed
in Examples 2.1 to 2.4.

3 Constructing Piecewise Constant Functions
In the following, we assume P to be a covered program with
bijective level mapping ‖ · ‖ which is, along with its inverse
‖ · ‖−1, effectively computable. As already mentioned, we
also assume that BP is infinite. However, our approach will
also work for the finite case with minor modifications. Fur-
thermore, R and fP denote embeddings with base b as de-
fined above.

3.1 Approximating one Application of TP

Within this section we will show how to construct a ground
subprogram approximating a given program. I.e., we will
construct a subset Pl of the ground program G(P), such that
the associated consequence operator TPl

approximates TP up
to a given accuracy ε. This idea was first proposed in [15].

Definition 3.1. For all l ∈ N, the set of atoms of level less
than or equal to l is defined as Al := {A ∈ BP |‖A‖ ≤ l}.
Furthermore, we define the instance of P up to level l as Pl :={
A← body ∈ G(P)

∣
∣A ∈ Al

}
.

Since the level mappings are required to be enumerations,
we know that Al is finite. Furthermore, it is also effectively
computable, due to the required computability of ‖ · ‖−1. It
is clear from the definition that Pl is ground and finite, and
again, can be computed effectively.

Definition 3.2. For all l ∈ N, the greatest relevant input level
with respect to l is

l̂ := max
{
‖L‖

∣
∣L is a body literal of some clause in Pl

}
.

Obviously, we can compute l̂ easily, since Pl is ground and
finite. The following lemma establishes a connection between
the consequence operators of some ground subprogram Pk

and the original program P .

Lemma 3.3. For all l, k ∈ N, k ≥ l, and I, J ∈ IP , we have
that TPk

(I) and TP (J) agree on Al if I and J agree on A
l̂
,

i.e.

I ∩A
l̂
= J ∩A

l̂
implies TPk

(I) ∩Al = TP (J) ∩Al.

Proof. This follows simply from the fact that I and J agree
on A

l̂
, and that TPk

contains all those clauses relating atoms
from A

l̂
and Al. Taking this into account we find that TP and

TPk
agree on Al.

Definition 3.4. The greatest relevant output level with re-
spect to some arbitrary ε > 0 is

oε := min

n ∈ N

∣
∣
∣

∑

‖A‖>n

R(A) < ε

= min

{

n ∈ N

∣
∣
∣n > −

ln(b− 1)ε

ln b

}

The following theorem connects the embedded conse-
quence operator of some subprogram with a desired error
bound, which will be used for later approximations using neu-
ral networks.

Theorem 3.5. For all ε > 0, we have that
∣
∣fP (x)− fPoε

(x)
∣
∣ < ε for all x ∈ Df .

Proof. Let x ∈ Df be given. From Lemma 3.3, we know that
TPoε

(R−1(x)) = R−1(fPoε
(x)) agrees with TP (R−1(x)) =

R−1(fP (x)) on all atoms of level ≤ oε. Thus, fPoε
(x) and

fP (x) agree on the first oε digits. So the maximum deviation
occurs if all later digits are 0 in one case and 1 in the other.
In that case, the difference is

∑

‖A‖>n R(A), which is < ε by
definition of oε.

3.2 Iterating the Approximation

Now we know that one application of fPoε
approximates fP

up to ε. But what will happen if we try to approximate several
iterations of fP ? In general, ôε might be greater than oε, that
is, the required input precision might be greater than the re-
sulting output precision. In that case, we lose precision with
each iteration. So in order to achieve a given output precision
after a certain number of steps, we increase our overall preci-
sion such that we can afford losing some of it. Since the pre-
cision might decrease with each step, we can only guarantee a
certain precision for a given maximum number of iterations.

Theorem 3.6. For all l, n ∈ N, we can effectively compute
l(n) such that for all I ∈ IP , m ≤ n, and k ≥ l(n):

Tm
Pk

(I) agrees with T m
P (I) on Al.

Proof. By induction on n. Let l ∈ N be given.

base n = 0: Obviously, T 0
Pk

(I) = I = T 0
P (I). We set

l(0) := l.

step n n + 1: By induction hypothesis, we can find l(n)

such that for all I ∈ IP , m ≤ n, and k ≥ l(n), Tm
Pk

(I)

x = 0. 0010101101010010
︸ ︷︷ ︸

l̂ digits are equal

000000 . . .b

x′ = 0.
︷ ︸︸ ︷

0010101101010010 111111 . . .b

Figure 4: Example for the endpoints of a range [x, x′] on
which fPl

is constant

agrees with T m
P (I) on A

l̂
. With l(n+1) := max{l, l(n)},

we then have for all I ∈ IP , m ≤ n, and k ≥ l(n+1):

Tm
Pk

(I) agrees with T m
P (I) on A

l̂
(k ≥ l(n))

⇒ Tm+1
Pk

(I) agrees with T m+1
P (I) on Al (3.3)

T 0
Pk

(I) = I = T 0
P (I) completes the Induction Step.

It follows that for all ε > 0, we can effectively compute
o
(n)
ε such that

∣
∣fn

P (x)− fn
P

o
(n)
ε

(x)
∣
∣ < ε for all x ∈ Df .

This result may not seem completely satisfying. If we want
to iterate our approximation, we have to know in advance how
many steps we will need at most. Of course, we could choose
a very large maximum number of iterations, but then the in-
stance of P up to the corresponding level might become very
large. But in the general case, we might not be interested
in so many iterations anyway, since TP does not necessarily
converge.

For acyclic programs, however, TP is guaranteed to con-
verge, and additionally we can prove that we do not lose pre-
cision in the application of TPl

. Due to the acyclicity of P we
have l̂ < l, and hence, with respect to Al, we obtain the same
result after n iterations of TPl

as we would obtain after n it-
erations of TP . Thus we can approximate the fixed point of
TP by iterating TPl

. To put it formally, we have that T n
Pl

(I)
agrees with T n

P (I) on Al for acyclic P and all n ∈ N. Thus,
in this case we find that |fn

P (x)−fn
Poε

(x)| < ε for all x ∈ Df

and all n ∈ N.

3.3 Simplifying the Domain
Now we have gathered all information and methods necessary
to approximate fP and iterations of fP . It remains to simplify
the domain of the approximation so that we can regard the
approximation as a piecewise constant function. We do this
by extending Df to some larger set Dl .

The idea is as follows. Since only input atoms of level ≤ l̂
play a role in Pl, we have that all x ∈ Df which differ only
after the l̂-th digit are mapped to the same value by fPl

. So
we have ranges [x, x′] ⊆ R of fixed length with x and x′ as in
Figure 4 such that all elements of [x, x′] ∩Df are mapped to

the same value. Obviously, there are 2l̂ such ranges, each of
length

∑

‖A‖>l̂
R(A). So we can extend fPl

to a function f̂Pl

which has a domain consisting of 2l̂ disjoint and connected
ranges and is constant on each of these ranges. Additionally,
the minimum distance between two ranges is greater than or
equal to the length of the ranges.

0.5

0.2

0.45

0.1

0.4

0.35

0 0.50.40.3
x

f̂Pl
(x)

Figure 5: Example for the graph of f̂Pl
with l̂ = 2; fP is

shown in grey.

The resulting graph of f̂Pl
will then look similar to the one

shown in Figure 5. We formalise these results in the follow-
ing.

Definition 3.7. An ordered enumeration of all left borders
dl,i can be computed as

dl,i :=

l̂∑

j=1

({

b−j if
⌊

i

l̂−j+1

⌋

mod 2 = 1

0 otherwise

)

.

Each of the intervals has length

λl :=
∑

‖A‖>l̂

R(A) =
1

(b− 1) · bl̂
.

Finally, we define

Dl :=
2l̂−1⋃

i=0

Dl,i with Dl,i := [dl,i, dl,i + λl] .

Thus, Dl consists of 2l̂ pieces of equal length.

Lemma 3.8. For all l ∈ N, we have Dl ⊇ Df .

Proof. Let l ∈ N and x ∈ Df . Then there is a dl,i which
agrees with x on its l̂ digits. But Dl,i contains all numbers
which agree with dl,i on its l̂ digits, thus x ∈ Dl,i ⊆ Dl .

Lemma 3.9. For all l ∈ N, the connected parts of Dl do not
overlap and the space between one part and the next is at least
as wide as the parts themselves.

Proof. The minimum distance between two parts occurs
when the left endpoints differ only in the last, i.e. l̂-th, digit.
In that case, the distance between these endpoints is b−l̂,
which is ≥ 2 · λl since b ≥ 3.

Lemma 3.10. For all l ∈ N and 0 ≤ i < 2l̂, fPl
is constant

on Dl,i ∩Df .

Proof. All atoms in bodies of clauses in Pl are of level ≤ l̂.
Thus, TPl

regards only those atoms of level ≤ l̂, i.e. TPl
is

constant for all interpretations which agree on these atoms.
This means that fPl

is constant for all x that agree on the first
l̂ digits, which holds for all x ∈ Dl,i ∩Df .

Definition 3.11. The extension of fPl
to Dl , f̂Pl

: Dl → Df ,
is defined as f̂Pl

(x) := fPl
(dl,i) for x ∈ Dl,i. From the

results above, it follows that f̂Pl
is well-defined.

Now we have simplified the domain of the approximated
embedded single-step operator such that we can regard it as a
function consisting of a finite number of equally long constant
pieces with gaps at least as wide as their length.

In the following, we will construct connectionist systems
which either compute this function exactly or approximate it
up to a given, arbitrarily small error. In the latter case we are
facing the problem that the two errors might add up to an error
which is larger than the desired maximum error. But this is
easily taken care of by dividing the desired maximum overall
error into one error ε′ for fPo

ε′
and another error ε′′ for the

constructed connectionist system.

4 Constructing Sigmoidal Feed-Forward
Networks

We will continue our exhibition by considering some arbi-
trary piecewise constant function g which we want to approx-
imate by connectionist systems. Since f̂Pl

is piecewise con-
stant, we can treat this function as desired, and others by the
same method. So in the following, let g : D → R be given
by

D :=

n−1⋃

i=0

[ai, ci], ci = ai + b, ci < ai+1,

g(x) := yi for x ∈ [ai, ci].

When we construct our connectionist systems, we are only
interested in the values they yield for inputs in D. We do
not care about the values for inputs outside of D since such
inputs are guaranteed not to be possible embeddings of inter-
pretations, i.e. in our setting they do not carry any symbolic
meaning which can be carried back to IP .

We will proceed in two steps. First, we will approximate g
by using connectionist systems with step activation functions.
Afterwards, we will relax our approach for the treatment of
sigmoidal activation functions.

4.1 Step Activation Functions
We will now construct a multi-layer feed-forward network
with weighted sum input function, where each of the units
in the hidden layer computes the following step function:

sl,h,m(x) :=

{
l if x ≤ m

l + h otherwise.

As an abbreviation, we will use si(x) := sli,hi,mi
(x) for

0 ≤ i < n − 1. We want the output to agree with g on its
domain, that is, we want

∑n−2
i=0 si(x) = g(x) for all x ∈ D.

An intuitive construction is depicted in Figure 6. For n
pieces, we use n − 1 steps. We put one step in the middle
between each two neighbouring pieces, then obviously the
height of that step must be the height difference between these
two pieces.

0.5

0.2

0.45

0.1

0.4

0.35

0 0.50.40.3
x

∑
si(x)

Figure 6: Sum of the step functions.

It remains to specify values for the left arms of the step
functions. All left arms should add up to the height of the
first piece. So we can choose that height divided by n− 1 for
each left arm. Now we have specified all si completely:

Definition 4.1. For 0 ≤ i < n− 1,

li :=
y0

n− 1
; hi := −yi + yi+1; mi :=

1

2
(ci + ai+1)

Theorem 4.2.
∑n−2

i=0 si(x) = g(x) for all x ∈ D.

Proof. Let x ∈ [aj , cj]. Then

n−2∑

i=0

si(x) =

j−1
∑

i=0

(li + hi) +
n−2∑

i=j

li =
n−2∑

i=0

li +

j−1
∑

i=0

hi

= y0 +

j−1
∑

i=0

(−yi + yi+1) = yj = g(x).

4.2 Sigmoidal Activation Functions
Instead of step activation functions, standard network archi-
tectures use sigmoidal activation functions, which can be con-
sidered to be approximations of step functions. The reason for
this is that standard training algorithms like backpropagation
require differentiable activation functions.

In order to accommodate this, we will now approximate
each step function si by a sigmoidal function σi:

σi(x) := σli,hi,mi,zi
(x) := li +

hi

1 + e−zi(x−mi)
.

Note that li, hi,mi are the same as for the step functions. The
error of the i-th sigmoidal is

δi(x) := |σi(x)− si(x)|.

An analysis of this function leads to the following re-
sults (illustrated in Figure 7): For all x 6= mi we have
limzi→∞ σi(x) = si(x); since both functions are symmet-
ric, we find for all zi,∆x,

δi(mi −∆x) = δi(mi + ∆x);

and furthermore, for all zi, x, x′ with |x′ −mi| > |x−mi|,

δi(x
′) < δi(x).

1

-2

0.5

0
-4

-0.5

-1

420

1

0.5

0
-4

-0.5

-1

-2 420

1

-2

0.5

0
-4

-0.5

-1

420

Figure 7: With increasing z, σl,h,m,z gets arbitrarily close to
sl,h,m everywhere but at m. The difference between σl,h,m,z

and sl,h,m is symmetric to m and decreases with increasing
distance from m. Shown here are σ−1,2,0,1, σ−1,2,0,5, s−1,2,0.

0.5

0.2

0.45

0.1

0.4

0.35

0 0.50.40.3
x

∑
σi(x)

Figure 8: The sigmoidal approximation.

Theorem 4.3. For all ε > 0 we can find zi (0 ≤ i < n − 1)

such that
∣
∣
∣
∑n−2

i=0 σi(x)− g(x)
∣
∣
∣ < ε.

Proof. In the worst case, the respective errors of the σi add up
in the sum. Thus we allow a maximum error of ε′ := ε

n−1 for
each σi. With all previous results, it only remains to choose
the zi big enough to guarantee that at those x ∈ D which are
closest to mi (i.e. ci and ai+1, which are equally close), σi

approximates si up to ε′, that is
[
δi(ci) =

]
δi(ai+1) < ε′.

Resolving this we get the following condition for the zi:

zi >

{

−∞ if |hi| ≤ ε′

− ln ε′−ln(|hi|−ε′)
ai+1−mi

otherwise

for 0 ≤ i < n− 1. This completes the proof.

Figure 8 shows the resulting sigmoidal approximation,
along with the original piecewise constant function from Fig-
ure 6.

Taking g to be f̂Pl
and ε > 0, the parameters li, hi, mi

as in Definition 4.1 and zi as in the proof of Theorem 4.3
determine an appropriate approximating sigmoidal network.

5 Constructing RBF Networks
Within the following section we will show how to construct
Radial Basis Function Networks (RBF Networks). For a
more detailed introduction for this type of network we refer
to [14]. As in the previous section, we take a stepwise ap-
proach and will first discuss triangular activation functions.

3210-1-2

1

-3

0.8

0.6

0.4

0.2

0
3210-1-2

1

-3

0.8

0.6

0.4

0.2

0

Figure 9: A constant piece can be obtained as the sum of two
triangles or two raised cosine functions.

We will then extend the results to so-called raised cosine ra-
dial basis functions. We will also briefly discuss how an ex-
isting network can be refined incrementally to lower the error
bound. The notation is the same as in the previous section.
We will again assume that g is a piecewise constant func-
tion, this time with the additional requirement that the gaps
between the pieces are ≥ the length of the pieces (which we
proved to hold for f̂Pl

), i.e. ci + b ≤ ai+1 for 0 ≤ i < n.

5.1 Triangular Activation Functions
We will now construct an RBF network with distance input
function, where each of the units in the hidden layer computes
a triangular function tw,h,m:

tw,h,m(x) :=

{

h ·
(

1− |x−m|
w

)

if |x−m| < w

0 otherwise

Since the triangular functions are locally receptive, that is,
they are 6= 0 only on the open range (m − w,m + w), we
can handle each constant piece separately and represent it as
a sum of two triangles, as illustrated in Figure 9.

For a given interval [ai, ci] (with ci = ai + b), we define

ti(x) := tb,yi,ai
(x), t′i(x) := tb,yi,ci

(x).

Thus, for each constant piece we get two triangles summing
up to that constant piece, i.e. for 0 ≤ i < n and x ∈ [ai, ci]
we have ti(x) + t′i(x) = yi, as illustrated in Figure 9.

The requirement we made for the gap between two con-
stant pieces guarantees that the triangles do not interfere with
those of other pieces.

Theorem 5.1.
∑n−1

i=0 (ti(x) + t′i(x)) = g(x) for all x ∈ D.

Proof. This equality follows directly from the fact that the
two triangles add up to a constant piece of the required height,
and furthermore, that they do not interfere with other constant
pieces as mentioned above.

5.2 Raised-Cosine Activation Functions
As in the previous section, standard radial basis function net-
work architectures use differentiable activation functions. For
our purposes, we will replace the triangular functions ti and
t′i by raised-cosine functions τi and τ ′

i , respectively, of the
following form:

τw,h,m(x) :=

{
h
2 ·
(

1 + cos
(

π(x−m)
w

))

if |x−m| < w

0 otherwise.

Again, we will use the following abbreviations:

τi(x) := τb,yi,ai
(x) τ ′

i(x) := τb,yi,ci
(x)

As illustrated in Figure 9, raised cosines add up equally
nice as the triangular ones, i.e. for 0 ≤ i < n and x ∈ [ai, ci]
we have τi(x) + τ ′

i(x) = yi. Similar to Theorem 5.1, one
easily obtains the following result.

Theorem 5.2.
∑n−1

i=0 (τi(x) + τ ′
i(x)) = g(x) for all x ∈ D.

As in the case of sigmoidal activation functions, we obtain
the required network parameters by considering f̂Pl

instead
of g.

5.3 Refining Networks
Our radial basis function network architecture lends itself to
an incremental handling of the desired error bound. Assume
we have already constructed a network approximating fP up
to a certain ε. We now want to increase the precision by
choosing ε′ with ε > ε′ > 0, or by increasing the great-
est relevant output level. Obviously we have oε′ ≥ oε for
ε > ε′ > 0.

For this subsection, we have to go back to the original func-
tions and domains from Section 3. Defining

∆Pl1,l2 :=
{
A← body ∈ G(P)

∣
∣l1 < ‖A‖ ≤ l2

}
,

one can easily obtain the following result.

Lemma 5.3. If l2 ≥ l1, then l̂2 ≥ l̂1, Dl2 ⊆ Dl1 , Pl2 =
Pl1 ∪∆Pl1,l2 , and Pl1 ∩∆Pl1,l2 = ∅.

Thus, the constant pieces we had before may become di-
vided into smaller pieces (if the greatest relevant input level
increases) and may also be raised (if any of the new clauses
applies to interpretations represented in the range of that par-
ticular piece).

Looking at the body atoms in ∆Pl1,l2 , we can identify the
pieces which are raised, and then add units to the existing
network which take care just of those pieces. Due to the
local receptiveness of RBF units and the properties of Dl

stated above, the new units will not disturb the results for
other pieces. Especially in cases where |∆Pl1,l2 | � |Pl1 |,
this method may be more efficient than creating a whole new
network from scratch.

We could also right away construct the network for Pl

by starting with one for P1 and refining it iteratively using
∆P1,2,∆P2,3, . . . ,∆Pl−1,l, or maybe using difference pro-
grams defined in another way, e.g. by their greatest relevant
input level. This may lead to more homogeneous construc-
tions than the method used in the previous subsections.

6 Conclusions and Future Work
In this paper, we have shown how to construct connection-
ist systems which approximate covered first-order logic pro-
grams up to arbitrarily small errors, using some of the ideas
proposed in [15]. We have thus, for a large class of logic
programs, provided constructive versions of previous non-
constructive existence proofs and extended previous con-
structive results for propositional logic programs to the first-
order case.

An obvious alternative to our approach lies in computing
the (propositional) ground instances of clauses of P up to a
certain level and then using existing propositional construc-
tions as in [11]. This approach was taken e.g. in [16], re-
sulting in networks with increasingly large input and output
layers. We avoided this for three reasons. Firstly, we want to
obtain differentiable, standard architecture connectionist sys-
tems suitable for established learning algorithms. Secondly,
we want to stay as close as possible to the first-order seman-
tics in order to facilitate refinement and with the hope that this
will make it possible to extract a logic program from a con-
nectionist system. Thirdly, we consider it more natural to in-
crease the number of nodes in the hidden layer for achieving
higher accuracy, rather than to enlarge the input and output
layers.

In order to implement our construction on a real computer,
we are facing the problem that the hardware floating point
precision is very limited, so we can only represent a small
number of atoms in a machine floating point number. If we
do not want to resort to programming languages emulating ar-
bitrary precision, we could try to distribute the representation
of interpretations on several units, i.e. to create a connection-
ist system with multi-dimensional input and output. For real
applications, it would also be useful to further examine the
possibilities for incremental refinement as in Section 5.3.

Another problem is that the derivative of the raised-cosine
function is exactly 0 outside a certain range around the peak,
which is not useful for training algorithms like backpropaga-
tion. Gaussian activation functions would be more suitable,
but appear to be much more difficult to handle.

We are currently implementing the transformation algo-
rithms, and will report on corresponding experiments on a
different occasion. One of our long-term goals follows the
path laid out in [7; 5] for the propositional case: to use logic
programs as declarative descriptions for initialising connec-
tionist systems, which can then be trained more quickly than
randomly initialised ones, and then to understand the opti-
mised networks by reading them back into logic programs.

References
[1] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker.

Towards a theory of declarative knowledge. In Jack
Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 89–148. Morgan Kauf-
mann, Los Altos, CA, 1988.

[2] Sebastian Bader, Artur S. d’Avila Garcez, and Pascal
Hitzler. Computing first-order logic programs by fibring
artificial neural networks. In Proceedings of the 18th
International FLAIRS Conference, Clearwater Beach,
Florida, May 2005, 2005. To appear.

[3] Sebastian Bader and Pascal Hitzler. Logic programs, it-
erated function systems, and recurrent radial basis func-
tion networks. Journal of Applied Logic, 2(3):273–300,
2004.

[4] Sebastian Bader, Pascal Hitzler, and Steffen Hölldobler.
The integration of connectionism and knowledge repre-
sentation and reasoning as a challenge for artificial in-
telligence. In L. Li and K.K. Yen, editors, Proceedings

of the Third International Conference on Information,
Tokyo, Japan, pages 22–33. International Information
Institute, 2004. ISBN 4-901329-02-2.

[5] Artur S. d’Avila Garcez, Krysia Broda, and Dov M.
Gabbay. Symbolic knowledge extraction from trained
neural networks: A sound approach. Artificial Intelli-
gence, 125:155–207, 2001.

[6] Artur S. d’Avila Garcez, Krysia B. Broda, and Dov M.
Gabbay. Neural-Symbolic Learning Systems — Founda-
tions and Applications. Perspectives in Neural Comput-
ing. Springer, Berlin, 2002.

[7] Artur S. d’Avila Garcez and Gerson Zaverucha. The
connectionist inductive lerarning and logic program-
ming system. Applied Intelligence, Special Issue on
Neural networks and Structured Knowledge, 11(1):59–
77, 1999.

[8] Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Robert A.
Kowalski and Kenneth A. Bowen, editors, Logic Pro-
gramming. Proceedings of the 5th International Con-
ference and Symposium on Logic Programming, pages
1070–1080. MIT Press, 1988.

[9] Pascal Hitzler, Steffen Hölldobler, and Anthony K.
Seda. Logic programs and connectionist networks.
Journal of Applied Logic, 2(3):245–272, 2004.

[10] Pascal Hitzler and Anthony K. Seda. Generalized met-
rics and uniquely determined logic programs. Theoreti-
cal Computer Science, 305(1–3):187–219, 2003.

[11] Steffen Hölldobler and Yvonne Kalinke. Towards a
massively parallel computational model for logic pro-
gramming. In Proceedings ECAI94 Workshop on Com-
bining Symbolic and Connectionist Processing, pages
68–77. ECCAI, 1994.

[12] Steffen Hölldobler, Yvonne Kalinke, and Hans-Peter
Störr. Approximating the semantics of logic programs
by recurrent neural networks. Applied Intelligence,
11:45–58, 1999.

[13] John W. Lloyd. Foundations of Logic Programming.
Springer, Berlin, 1988.

[14] R. Rojas. Neural Networks — A Systematic Introduc-
tion. Springer, 1996.

[15] Anthony K. Seda. On the integration of connectionist
and logic-based systems. In M. Schellekens T. Hurley,
M. Mac an Airchinnigh and A. K. Seda, editors, Pro-
ceedings of MFCSIT2004, Trinity College Dublin, July
2004, Electronic Notes in Theoretical Computer Sci-
ence, Elsevier, pages 1–24, 2005.

[16] Anthony K. Seda and Máire Lane. On approximation
in the integration of connectionist and logic-based sys-
tems. In L. Li and K.K. Yen, editors, Proceedings of the
Third International Conference on Information, Tokyo,
Japan, pages 297–300. International Information Insti-
tute, 2004. ISBN 4-901329-02-2.

