Ontology Design Patterns for Linked Data Publishing – Chess Example

Pascal Hitzler
Data Semantics Laboratory (DaSe Lab)
Data Science and Security Cluster (DSSC)
Wright State University
http://www.pascal-hitzler.de
See IOS Press booth

Pascal Hitzler, Aldo Gangemi, Krzysztof Janowicz, Adila Krisnathi, Valentina Presutti (eds.),
Ontology Engineering with Ontology Design Patterns: Foundations and Applications.

25% off flyer at

Supplementary material for the chess example at
http://dase.cs.wright.edu/content/pattern-driven-linked-data-publishing-primer
An **Ontology Design Pattern** (ODP) is a reusable successful solution to a recurrent ontology modeling problem.

[Gangemi 2005]
Axiomatization

\[
\top \subseteq \forall \text{providesAgentRole}. \text{AgentRole} \\
\text{AgentRole} \subseteq \forall \text{performedBy}. \text{Agent} \\
\exists \text{performedBy}. \text{Agent} \subseteq \text{AgentRole} \\
\text{AgentRole} \subseteq \forall \text{startsAtTime}. \text{TimeInstant} \\
\text{AgentRole} \subseteq \forall \text{endsAtTime}. \text{TimeInstant} \\
\text{AgentRole} \subseteq \exists \text{providesAgentRole}^{-}. \top \\
\text{AgentRole} \subseteq =1 \text{performedBy}. \text{Agent} \\
\text{AgentRole} \subseteq =1 \text{startsAtTime}. \text{TimeInstant} \\
\text{AgentRole} \subseteq =1 \text{endsAtTime}. \text{TimeInstant} \\
\text{DisjointClasses}(\text{AgentRole}, \text{Agent}, \text{TimeInstant})
\]
Ontology Axiomatization Support (OWLAx)

- Protégé Plug-In

- Insert class diagram using graphical UI
- System asks you whether to include corresponding axioms (taken from a pool of most common axioms for the diagram)
- You can of course also manually add further axioms.

http://dase.cs.wright.edu/content/ontology-axiomatization-support
Modeling OWL with Rules (ROWL)

• Protégé Plug-In

• Enter rules using interface very similar to SWRL Tab.
• But rules are converted into OWL axioms (whenever possible) instead of DL-safe rules.

E.g., \(\text{Pig}(x) \rightarrow \text{Mammal}(x) \) becomes \(\text{Pig} \sqsubseteq \text{Mammal} \) and thus carries the correct semantics.

http://dase.cs.wright.edu/content/modeling-owl-rules
A Minimal Event Pattern

\[
\begin{align*}
\top & \sqsubseteq \forall \text{hasSpatioTemporalExtent}. \text{SpatioTemporalExtent} \\
\top & \sqsubseteq \forall \text{providesAgentRole}. \text{AgentRole} \\
\text{Event} & \sqsubseteq \exists \text{hasSpatioTemporalExtent}. \text{SpatioTemporalExtent} \\
\text{Event} & \sqsubseteq \forall \text{subEventOf}. \text{Event} \\
\exists \text{subEventOf}. \text{Event} & \sqsubseteq \text{Event} \\
\text{subEventOf} \circ \text{subEventOf} & \sqsubseteq \text{subEventOf} \\
\text{DisjointClasses(} & \text{Event, AgentRole, SpatioTemporalExtent) }
\end{align*}
\]
Worked Example: Chess

- Establish a searchable repository for chess data.

- Starting point are PGN files.
- Should be extendable with other information from
 - Chess websites
 - Wikipedia
 - Geographic data
 - News
 - Etc.

- Use an ontology for information integration.
GeoVoCamps modeling approach

• Collaborative modeling, group ideally has
 – More than one domain experts.
 – People familiar with the base data.
 – People understanding possible target use cases.
 – An ontology engineer familiar with the modeling approach.
 – Somebody who understands formal semantics of OWL.

• Domain experts are queried as to the main notions for the application domain.
 – E.g. for chess, these would include
 • Chess game; move; opening; tournament; players; commentary
GeoVoCamps modeling approach

- From available data and from application use cases, devise competency questions, i.e. questions which should be convertible into queries, which in turn should be answerable using the data.

1. Who played against Kasparov in the round 1994 Lineares tournament? Did (s)he play as a white or black player?
2. What is the first move taken by the black player in the Sicilian Defense opening?
3. Find all games in which Bobby Fischer, playing black, lost in the poisoned pawn variation of the Sicilian Defence opening.
4. Are there any recorded games using the Grünfeld Defence from before the 20th century?
5. What did Kasparov say about his opponent’s first two moves in his commentary about his game against Topalov in the 1999 Tournament in Wijk ann Zee?
6. Who was the first non-Russian world champion after Fischer?
7. Did Bobby Fischer ever play against a grandmaster in Germany?
8. List all world championship games won by forfeit.
• Then prioritize which notions to model first. In the chess case, e.g.

 - chess game
 - move/half-move
 - players
 - opening
 - tournaments
 - commentary
GeoVoCamps modeling approach

- Understand the nature of the things you are modeling.

<table>
<thead>
<tr>
<th>Chess game</th>
<th>...</th>
<th>An Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-move</td>
<td>...</td>
<td>A Subevent of a chess game</td>
</tr>
<tr>
<td>Player</td>
<td>...</td>
<td>The Role of an Agent</td>
</tr>
<tr>
<td>Opening</td>
<td>...</td>
<td>this is probably complex</td>
</tr>
<tr>
<td>tournaments</td>
<td>...</td>
<td>Events</td>
</tr>
<tr>
<td>commentary</td>
<td>...</td>
<td>this is again more complex</td>
</tr>
</tbody>
</table>
Player as AgentRole

owl:Thing ──► AgentRole

AgentRole ──► TimeInstant

AgentRole ──► Agent

BlackPlayerRole rdfs:subClassOf AgentRole

WhitePlayerRole rdfs:subClassOf AgentRole

ChessGame providesAgentRole AgentRole

AgentRole performedBy Agent
ChessGame as Event

- TemporalExtent
 - atTime
 - Event
 - subEventOf
 - Event
 - providesAgentRole
 - AgentRole
 - performedBy
 - Agent
 - atPlace
 - Place

- TemporalExtent
 - atTime
 - ChessGame
 - providesAgentRole
 - AgentRole
 - performedBy
 - Agent
 - atPlace
 - Place
Half-moves

Diagram showing the relationship between temporal extent, events, places, and agent roles in the context of a chess game.
Opening, game result, etc.

We call these “stubs”.

I.e. we’re aware that more fine-grained modeling will be needed for some use cases.

But currently there’s no reason to do it (not in use case, no data), so we only provide “hooks” for future development of the ontology.
Putting things together
Adding commentaries
Adequacy check

- Triplify sample data using the ontology. Does it work?

- Check if competency questions can be answered.

- Add axioms as appropriate (the graph is only for intuition, the OWL axioms are the actual ontology).

- (there are more post-hoc details to be taken care of, but let’s leave it at that)
Axioms

Axioms in this case are mostly straightforward:

- Inherited from Event or AgentRole
- Scoped domain/range restrictions, possibly with some cardinalities
- Basic existentials
- Non-cyclicity of half-move sequence

What about adding, e.g., the following?

\[\text{ChessGame} \sqsubseteq \geq 0 \text{subEventOf. ChessTournament} \]

If one of the roles of axiomatization is to improve human understanding of the ontology, then such axioms are helpful!
Shortcuts and Views
Shortcuts

\[
\text{ChessGame}(x) \land \text{pAR}(x, y) \land \text{WhitePlayerRole}(y) \land \text{performedBy}(y, z) \\
\land \text{Agent}(z) \land \text{hasName}(z, s) \rightarrow \text{hasWhitePlayer}(x, s)
\]

\[
\text{ChessGame}(x) \land \text{pAR}(x, y) \land \text{BlackPlayerRole}(y) \land \text{performedBy}(y, z) \\
\land \text{Agent}(z) \land \text{hasName}(z, s) \rightarrow \text{hasBlackPlayer}(x, s)
\]
Translating the rules

However note that the introduction of additional role chains may cause violations of regularity restrictions.
Simplified View

xsd:string

ChessGame

xsd:string

HalfMove

xsd:dateTime

hasSANRecord

nextHalfMove

playedBy

hasFirstHalfMove, hasLastHalfMove, hasHalfMove

ChessGameReport

xsd:string

ChessGameReport hasPGNFile xsd:anyURI

hasAuthor

hasWhitePlayer, hasBlackPlayer

hasResultSAN

hasOpeningECO

hasReport

atChessTournament

atPlaceNamed

atTime

subEventOf
We used rules (axioms) to express the mapping from the ontology to the view.

The reverse direction is much more tricky.

\[
\begin{align*}
ClassA(x) & \land ClassB(y) \land C_1(x_1) \land \cdots \land C_n(x_n) \land R_1(y_1, y_2) \land \cdots \land R_k(y_k, y_{k+1}) \\
\rightarrow & \text{shortcut}(x, y). \\
\text{shortcut}(x, y) & \rightarrow ClassA(x) \land ClassB(y) \land \exists x_1 \ldots \exists x_n \exists y_1 \ldots \exists y_n (C_1(x_1) \land \cdots \\
& \quad \cdots \land C_n(x_n) \land R_1(y_1, y_2) \land \cdots \land R_k(y_k, y_{k+1}))
\end{align*}
\]
Existential rules may be suitable in principle.

\[
\text{shortcut}(x, y) \rightarrow \text{ClassA}(x) \land \text{ClassB}(y) \land \exists x_1 \ldots \exists x_n \exists y_1 \ldots \exists y_n (C_1(x_1) \land \ldots \land C_n(x_n) \land R_1(y_1, y_2) \land \ldots \land R_k(y_k, y_{k+1}))
\]

However automated reasoning with the potentially rather complex rule heads requires investigations, in particular if it is to be integrated with ontology reasoning.

A specific case are right-hand-side role chains:

\[
R \sqsubseteq R_1 \circ \cdots \circ R_n,
\]
Spatiotemporal Extents
A Minimal Event Pattern

\[
\begin{align*}
\top & \sqsubseteq \forall \text{hasSpatioTemporalExtent} \cdot \text{SpatioTemporalExtent} \\
\top & \sqsubseteq \forall \text{providesAgentRole} \cdot \text{AgentRole} \\
\text{Event} & \sqsubseteq \exists \text{hasSpatioTemporalExtent} \cdot \text{SpatioTemporalExtent} \\
\text{Event} & \sqsubseteq \forall \text{subEventOf} \cdot \text{Event} \\
\exists \text{subEventOf} \cdot \text{Event} & \sqsubseteq \text{Event} \\
\text{subEventOf} \circ \text{subEventOf} & \sqsubseteq \text{subEventOf} \\
\text{DisjointClasses} & (\text{Event, AgentRole, SpatioTemporalExtent})
\end{align*}
\]
Trajectory Pattern
Spatiotemporal Extent

Diagram:

- owl:Thing
 - hasSpatioTemporalExtent
 - Trajectory
 - hasTrajectory
 - hasSegment
 - hasAttribute
 - hasFix
 - starisFrom
 - endsAt
 - Segment
 - hasAttribute
 - hasFix
 - atPlace
 - nextFix
 - atTime
 - subClassOf
 - Fix
 - startsFrom
 - endsAt
 - nextFix
 - atTime
 - subClassOf
 - Place
 - atPlace
 - subClassOf
 - TimeEntity
 - atTime
 - subClassOf
A Stationary Trajectory
Discontinuous temporal extent
Thanks!

Acknowledgements:
Adila Krisnadhi
Victor Rodriguez-Doncel
Michelle Cheatham
Nazifa Karima
Reihaneh Amini

References

Adila Krisnadhi, Ontology Pattern-Based Data Integration. Dissertation, Department of Computer Science and Engineering, Wright State University, 2015.
References

References

Steve Harris, Andy Seaborne, SPARQL 1.1 Query Language. W3C Recommendation 21 March 2013.
References

