Pattern-Based Linked Data Publication:
The Linked Chess Dataset Case

Víctor Rodríguez-Doncel¹, Adila A. Krisnadhi²,³, Pascal Hitzler², Michelle Cheatham², Nazifa Karima², and Reihaneh Amini²

¹ Ontology Engineering Group, Universidad Politécnica de Madrid
² Data Semantics Lab, Wright State University
³ Faculty of Computer Science, Universitas Indonesia
“… I suppose if we are still seeing a lack of contributions and applications with respect to consuming Linked Data, one would have to question how Linked Data is published in the first-place. And indeed getting publishers to agree on patterns – not just vocabulary – would seem to make consumers' lives that little bit easier. ... Maybe agreement on patterns – not just vocabulary – is what we need to help kick-start consumption of Linked Data”
“Nancy Pelosi voted in favor of the Health Care Bill.”

Bills:h3962

Vote: 2009-887

Votes: 2009-887/+ vote:votedBy

people/P000197 name

On Passage: H R 3962 Affordable Health Care for America Act

dc:title

Aye

rdfs:label
dc:title

vote:votedBy

vote:hasOption vote:vote

vote:hasAction

H.R. 3962: Affordable Health Care for America Act

dc:title
Example from Linked MDB

```
Film
  hasActor

Actor
  hasName
    xsd:string
```

- Film
- Actor
- xsd:string
- hasActor
- hasName
Problem!

Sesame Street

Actor (class)

Jim Henson

Muppet Show

Kermit

Ernie

hasActor

hasActor

hasActor

hasName

plays

plays

plays
Implicit Ontologies

When publishing Linked Data, there is always an underlying graph schema, which somebody has “designed.”

In other words, there is always an underlying ontology even if the provider hasn’t bothered to write it up properly or share it.

The W3C Shapes Working Group is probably out to make this explicit.

(I’m not sure why they don’t call them “ontologies” though, but I can also live with “RDF Shapes” of course.)
You can’t avoid the schema when dealing with Linked Data.

Which means you also can’t avoid the ontology/schema modeling issues.

If your schema is not well-designed and well-documented, then it will not be easily reusable.

[Looking forward to seeing more about the RDF Shapes work.]
From ontologies to linked data

We recently realized we have a lot of chess players in the lab.

And that there’s no linked dataset for chess games.

So we decided to change that.

There is already an established standard, the Portable Games Notation PGN (text-based, with some basic metadata), and lots of data available on the Web.

Following our own recommendations, we first made an ontology …
GeoVoCamps modeling approach

- **Collaborative modeling**, group ideally has
 - More than one domain experts.
 - People familiar with the base data.
 - People understanding possible target use cases.
 - An ontology engineer familiar with the modeling approach.
 - Somebody who understands formal semantics of OWL.

- Domain experts are queried as to the **main notions** for the application domain.
 - E.g. for chess, these would include
 - Chess game; move; opening; tournament; players; commentary
GeoVoCamps modeling approach

- From available data and from application use cases, devise competency questions, i.e. questions which should be convertible into queries, which in turn should be answerable using the data.

 Retrieve all games where Fischer lost in the poisoned pawn variation of the Sicilian.

 Retrieve all games where Fischer opened 1. Nf3.

- Then prioritize which notions to model first. In the chess case, e.g.

 chess game
 move/half-move
 players
 opening
 commentary
 tournaments
GeoVoCamps modeling approach

- Understand the nature of the things you are modeling.

<table>
<thead>
<tr>
<th>Chess game</th>
<th>An Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-move</td>
<td>A Subevent of a chess game</td>
</tr>
<tr>
<td>Player</td>
<td>The Role of an Agent</td>
</tr>
<tr>
<td>Opening</td>
<td>this is probably complex</td>
</tr>
<tr>
<td>commentary</td>
<td>this is again more complex</td>
</tr>
<tr>
<td>tournaments</td>
<td>Events</td>
</tr>
</tbody>
</table>
Chess game / player
Opening and games result

We call these “stubs”.

I.e. we’re aware that more fine-grained modeling will be needed for some use cases.

But currently there’s no reason to do it (not in use case, no data), so we only provide “hooks” for future development of the ontology.
Commentary and PGN file
Just generic “event” stubs with some text names.
Adequacy check

- **Triplify sample data** using the ontology. Does it work?

- Check if **competency questions** can be answered.

- **Add axioms** as appropriate (the graph is only for intuition, the OWL axioms are the actual ontology).

- (there are more post-hoc details to be taken care of, but let’s leave it at that)
Shortcuts (views)

Example of ontology view

- game123
 - (a chess:ChessGame)
 - hasWhitePlayerName
 - “Bobby Fischer”

Example of ontology pattern

- game123
 - (a chess:ChessGame)
 - hasWhitePlayer
 - (a chess:Agent)
 - hasELORating
 - “2800”
 - hasName
 - “Bobby Fischer”
 - closeMatch
 - dbpedia:Bobby_Fischer
Modular modeling

Note the modular modeling. We find that it helps tremendously to

- Focus on a single notion at a time.
- Discuss with domain experts on their grounds without the need to get into technical details.
- Relate to existing ontology design patterns, which helps with reuse and with quality modeling.
Take Home Message

• Ontologies cannot be avoided: There is always a conceptual model, even if it’s not explicated.

• Modular and thorough modeling makes reuse of linked data considerably easier.

“... I suppose if we are still seeing a lack of contributions and applications with respect to consuming Linked Data, one would have to question how Linked Data is published in the first-place. And indeed getting publishers to agree on patterns – not just vocabulary – would seem to make consumers' lives that little bit easier. ... Maybe agreement on patterns – not just vocabulary – is what we need to help kick-start consumption of Linked Data”
References

References

Linked Chess Data

See http://salonica.dia.fi.upm.es:8080/rdfchess/

(should be available later on http://chessdata.org)