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Abstract. We present an improved local closed world extension for de-
scription logics. It is based on circumscription, and deviates from pre-
vious circumscriptive description logics [1, 3] in that extensions of min-
imized predicates may contain only extensions of named individuals in
the knowledge base. Besides an (arguably) higher intuitive appeal, the
improved semantics is applicable to expressive description logics without
loss of decidability.
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1 Introduction

The semantics of the Web Ontology Language OWL [4] (which is based on the
description logic SROIQ [5]) adheres to the Open World Assumption (OWA),
which means that statements which are not logical consequences of a given
knowledge base are not necessarily considered false. The OWA is a very reason-
able assumption to make in the World Wide Web context (and thus for Semantic
Web applications), however situations naturally arise where it would be prefer-
able to use the Closed World Assumption (CWA), that statements which are
not logical consequences of a given knowledge base are always considered false.
The CWA is applicable, e.g., when data is being retrieved from a database, or
if data can otherwise be considered complete with respect to the application at
hand (see, e.g., [2]).

As a consequence, efforts have been made to combine OWA and CWA for the
Semantic Web, and knowledge representation languages which have both OWA
and CWA modeling features are said to adhere to the Local Closed World As-
sumption (LCWA). Most of these combinations are derived from non-monotonic
logics which have been studied in logic programming or on first-order predicate
logic, and many of them have a hybrid character, meaning that they achieve the
LCWA by combining, e.g. description logics with (logic programming) rules.

Of the approaches which provide a seamless (non-hybrid) integration of OWA
and CWA, there are not that many, and each of them has its drawbacks. This
is despite the fact that the modeling task, from the perspective of the applica-
tion developer, seems rather simple: Users would want to specify, simply, that



individuals in the extension of a predicate should be exactly those which are nec-
essarily required to be in it, i.e., extensions should be minimized. Thus, what is
needed for applications is a simple, intuitive approach to closed world modeling.

Among the primary approaches to non-monotonic reasoning, there is exactly
one approach which employs the minimization idea in a very straightforward and
intuitively simple manner, namely circumscription [7]. However, a naive trans-
fer of the circumscription approach to description logics leads to undecidability
for expressive description logics if role minimization is allowed [1, 3]. Our idea
to remedy this is simple yet effective: we modify the circumscription approach
from [1, 3] by adding the additional requirement that extensions of minimized
predicates may only contain named individuals (or pairs of such, for roles).

The paper is structured as follows. In Section 2 we introduce the semantics
of grounded circumscription. In Section 3 we show that the resulting language
is decidable. In Section 4 we conclude with a discussion of further work.

An extended version of this paper has been accepted for publication at
the 24th International Workshop on Description Logics, Barcelona, Catalonia
(Spain), July 2011.

2 Grounded Circumscription

We now describe a very simple way for ontology designers to model local closed
world aspects in their ontologies: simply use a description logic (DL) knowledge
base (KB) as usual, and augment it with meta-information which states that
some predicates (concept names or role names) are closed. Semantically, those
predicates are considered minimized, i.e. their extensions contain only what is
absolutely required, and furthermore only contain known (or named) individuals,
i.e., individuals which are explicitly mentioned in the KB. In the case of concept
names, the idea of restricting their extensions only to known individuals is similar
to the notion of nominal schema [6], while the minimization idea is borrowed from
circumscription [7], one of the primary approaches to non-monotonic reasoning.

Indeed, the ideas of carrying over circumscription to DLs is not new, and
has already been described in [1, 3]. In particular, they divided the predicates
(concept names and role names) in the KB into three disjoint sets of minimized,
fixed and varying predicates. These sets together with some preference relation
on interpretations made up a circumscription pattern. The preference relation
allows us to pick the minimal models as the preferred models with respect to
inclusion of the extension of the minimized predicates.

Our formalism simplifies the circumscription approach by restricting our at-
tention to models in which the extensions of the minimized predicates may only
contain known individuals from the KB. Moreover, we divide predicates in the
KB only into two disjoint sets of minimized and non-minimized predicates.1

1 Fixed predicates can be simulated in the original circumscriptive DL approach if
negation is available, i.e., for fixed class names, class negation is required, while for
fixed role names, role negation is required. The latter can be added to expressive
DLs without jeopardizing decidability [6, 8].



The non-minimized predicates would be viewed as varying in the more general
circumscription formalism mentioned above.

Let NC , Nr, and NI be three disjoint, countably infinite sets of concept names,
role names, and individual names, resp. Let L be a standard description logic
based on the signature formed from NC , NR, and NI . In addition, we define
an L-KB as a set of concept inclusion axioms C v D where C,D ∈ NC , and
assertions of the form C(a) and r(a, b) where C ∈ NC , r ∈ Nr and a, b ∈ NI .

The semantics for L is defined in terms of interpretations I = (∆I , ·I) where
∆I is a non-empty set called the domain and ·I is an interpretation function
that maps each concept name to a subset of ∆I , each role name to a subset of
∆I × ∆I and each individual name to an element of ∆I . An interpretation I
is extended to complex concepts and roles in the usual way for L. We say that
I satisfies (is a model of ): an axiom C v D if CI ⊆ DI ; an axiom C(a) if
aI ∈ CI ; and an axiom r(a, b) if (aI , bI) ∈ rI . We also say that I satisfies (is a
model of ) an L-KB K if it satisfies every axioms in K. A concept C is satisfiable
with respect to an L-KB K if there is a model I of K such that CI 6= ∅.

The non-monotonic feature of the formalism is given by restricting models
of an L-KB such that the extensions of closed predicates may only contain
individuals (or pairs of them) which are explicitly occurring in the KB, plus
a minimization of the extensions of these predicates. We define a function Ind
that maps each L-KB to the set of individual names it contains, i.e., given an
L-KB K, Ind(K) = {b ∈ NI | b occurs in K}. Among all possible models of K
that are obtained by the aforementioned restriction to Ind(K), we then select a
model that is minimal w.r.t. concept inclusion or role inclusion.

Definition 1. A GC-L-knowledge base (KB)—GC stands for grounded cir-
cumscription—is a pair (K,M) where K is an L-KB and M ⊆ {A ∈ NC |
A occurs in K} ∪ {r ∈ Nr | r occurs in K}. For every concept name and role
name W ∈M , we say that W is closed with respect to K.

Definition 2. Let (K,M) be a GC-L-KB and I and J be two models of K.
We say that I is smaller than J w.r.t. M iff all of the following hold:
– ∆I = ∆J and aI = aJ for every aI ∈ ∆I ;
– W I ⊆WJ for every W ∈M ; and
– there exists a W ∈M such that W I ⊂WJ

We now define models of GC-L-KB as follows.

Definition 3. An interpretation I is a GC-model of a GC-L-KB (K,M) if all
of the following hold:
– I is a model of K;
– for each concept name A ∈M , AI ⊆ {bI | b ∈ Ind(K)};
– for each role name r ∈M , rI ⊆ {bI | b ∈ Ind(K)} × {bI | b ∈ Ind(K)}; and
– I is minimal w.r.t. M , i.e., there is no model J of K such that J is smaller

than I w.r.t. M .

The notion of logical consequence is defined as usual: An axiom α is a logical
consequence (a GC-inference) of a given GC-L-KB (K,M) if and only if α is



true in all GC-models of (K,B). Note, that every GC-model of a KB is also
a circumscriptive model, hence every circumscriptive inference is also a valid
GC-inference.

3 Decidability Considerations

As noted earlier, circumscription in many expressive DLs is undecidable [1].
Undecidability even extends to the basic DL ALC when non-empty TBoxes are
considered and roles are allowed as minimized predicates. Such a bleak outlook
would greatly discourage useful application of circumscription, despite the fact
that there is a clear need of such a formalism to model LCWA.

Our formalism aims to fill this gap by offering a simpler approach to cir-
cumscription in DLs that is decidable provided that the underlying DL is also
decidable. The decidability result is obtained due to the imposed restriction of
minimized predicates to known individuals in the KB as specified in Definition 3.
Let L be any standard DL. We consider the following reasoning task of GC-KB
satisfiability : “given a GC-L-KB (K,M), does (K,M) have a GC-model?” and
show in the following that this is decidable. Note that other basic reasoning tasks
can usually be reduced to this task [1, 3].

Assume that L is any (standard) DL, e.g., ALCOB(×), featuring nominals,
concept disjunction, concept products and role disjunctions.2 We show that GC-
KB satisfiability in L is decidable if satisfiability in L is decidable.

Let (K,M) be a GC-L-KB. We assume that M = MA ∪Mr where MA =
{A1, . . . , An} is the set of minimized concept names and Mr = {r1, . . . , rm} is
the set of minimized role names. Now define a family of (n+m)-tuples as

G(K,M) = {(X1, . . . , Xn, Y1, . . . , Ym) | Xi ⊆ Ind(K), Yj ⊆ Ind(K)× Ind(K)}

with 1 ≤ i ≤ n, 1 ≤ j ≤ m. Note that there are(
2|Ind(K)|

)n
·
(

2Ind(K)2
)m

= 2n·|Ind(K)|+m·|Ind(K)|2 (1)

of such tuples; in particular note that G(K,M) is a finite set.
Now, given (K,M) and some G = (X1, . . . , Xn, Y1, . . . , Ym) ∈ G(K,M), let

KG be the L-KB consisting of all axioms in K together with all of the following
axioms, where the Ai and rj are all the predicates in M—note that we require
role disjunction and concept products for this.

Ai ≡
⊔
{a} for every a ∈ Xi and i = 1, . . . , n

rj ≡
⊔

({a} × {b}) for every pair (a, b) ∈ Yj and j = 1, . . . ,m

Then the following result clearly holds.

2 For concept products, see [6]—they can be eliminated if role constructors are avail-
able. For role disjunctions, see [8], where it is shown, amongst other things, that
ALCQIOB is decidable.



Lemma 1. Let (K,M) be a GC-L-KB. If (K,M) has a GC-model I, then there
exists G ∈ G(K,M) such that KG has a (classical) model J which coincides with
I on all minimized predicates. Likewise, if there exists G ∈ G(K,M) such that KG

has a (classical) model J , then (K,M) has a GC-model I which coincides with
J on all minimized predicates.

Now consider the set

G′(K,M) = {G ∈ G(K,M) | KG has a (classical) model},

and note that this set is finite and computable in finite time since G(K,M) is
finite and L is decidable. Furthermore, consider G′(K,M) to be ordered by the
pointwise ordering ≺ induced by ⊆. Note that the pointwise ordering of the
finite set G′(K,M) is also computable in finite time.

Theorem 1. Let (K,M) be a GC-L-KB, and let

G′′(K,M) = {G ∈ G′(K,M) | G is minimal in (G′(K,M),≺)}.

Then (K,M) has a GC-model if and only if G′′(K,M) is non-empty.

Proof. This follows immediately from Lemma 1 together with the following ob-
servation: Whenever K has two GC models I and J such that I is smaller than
J , then there exist GI , GJ ∈ G′(K,M) with GI ≺ GJ such that KGI

and KGJ
have

(classical) models I ′ and J ′, respectively, which coincide with I, respectively, J ,
on the minimized predicates.

Corollary 1. GC-KB-satisfiability is decidable.

Proof. This follows from Theorem 1 since the set G′′(K,M), for any given GC-KB

(K,M), can be computed in finite time, i.e., it can be decided in finite time
whether G′′(K,M) is empty.

Some remarks on complexity are as follows. Assume that the problem of
deciding KB satisfiability in L is in the complexity class C. Observe from equa-
tion (1) that there are exponentially many possible choices of the (n+m)-tuples
in G(K,M) (in the size of the input knowledge base). Computation of G′(K,M) is

thus in ExpC, and subsequent computation of G′′(K,M) is also in Exp. We thus
obtain the following upper bound.

Proposition 1. GC-KB satisfiability is in ExpC , where C is the complexity
class of the DL under consideration.

Observe that the decidability proof gives rise to a straightforward implemen-
tation procedure, however this is certainly not a smart algorithm.



4 Conclusion and Outlook

We have provided a new approach for incorporating the LCWA into description
logics. Our approach, grounded circumscription, is a variant of circumscriptive
description logics which avoids two major issues of the original approach: Ex-
tensions of minimized predicates can only contain named individuals, and we
retain decidability even for very expressive description logics while we can allow
for the minimization of roles.

A primary theoretical task is to investigate the complexity of our modified
approach, but it can be expected that it is not going to be worse than the
previous circumscription proposal. In fact, lower complexities should result in
some cases, which may yield to tractable or data-tractable fragments.

Likewise, it should be possible to adapt the tableaux algorithm for circum-
scriptive description logics from [3] to our setting, and there may even be more
efficient procedures.
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