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ABSTRACT
Ontology design patterns ease the engineering of ontologies, im-
prove their quality, foster reusability, and support the alignment of
ontologies by acting as common building blocks or strategies for
reoccurring modeling problems. This makes ontology design pat-
terns key enablers of semantic interoperability and, hence, a crucial
technology for representing the body of knowledge of such hetero-
geneous domains as the geosciences. While different types of pat-
terns can be distinguished, existing work on geo-ontology design
patterns has solely focused on content patterns, i.e., design solu-
tions for domain classes and relationships. In this work, we pro-
pose a logical pattern that addresses a frequent modeling problem
that has hampered the development of sophisticated geo-ontologies
in the past, namely how to model the quantification over types. We
argue for the need for such a pattern, explain why it is difficult to
model, demonstrate how to implement it using the Web Ontology
Language OWL, and finally show how it can be applied to model-
ing concepts such as biodiversity.

Categories and Subject Descriptors
I.2.12 [Intelligent Web Services and Semantic Web]: [Ontol-
ogy design]; I.2.4 [Knowledge Representation Formalisms and
Methods]: [Representation languages]; I.2.13 [Knowledge Man-
agement]: [Knowledge reuse]

General Terms
Theory

Keywords
Geo-Ontology Design Patterns, Geospatial Semantics, Interoper-
ability, Heterogeneity

1. INTRODUCTION
Knowledge engineering is increasingly recognized as a successful
approach to improve the publication, discovery, reuse, and inte-
gration of heterogeneous data. Examples include the success of
Linked Data [1] for publishing and reusing data as well as Google’s
new Knowledge Graph with its things not strings slogan offering a
lightweight approach to semantic search. Typically, systems and
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infrastructures that employ knowledge engineering methods con-
sist of two parts, domain vocabularies represented in some formal
knowledge representation language, i.e., ontologies, and software
that exploits the encoded facts, e.g., to improve search beyond sim-
ple keywords. Consequently, the added value of knowledge engi-
neering depends on the strengths of the used representation lan-
guage as well as the represented knowledge. Numerous formal lan-
guages have been developed over the last decades, the W3C stan-
dardized Web Ontology Language (OWL) [15, 16] being the most
successful language in terms of adoption. These languages differ
in their expressivity, i.e., in the ability to assign a formal semantics
to language constructs, and computational characteristics such as
their complexity and decidability [10].

While expressivity determines which domain facts can be encoded
in a way exploitable by software, the added value largely depends
on what knowledge is actually captured, i.e., the quality and quan-
tity of formalization. To give a simplified example, a knowledge
representation language that does not support transitivity cannot be
adequately used to model meronomies [34] and, therefore, will not
be suitable for geographic information. Transitivity alone, how-
ever, does not add any value without introducing relations such as
part-of. Therefore, the constant progress in developing knowledge
representation languages does not automatically translate to more
or better ontologies.

Engineering high-quality ontologies is a difficult task. Several
methodologies, such as Methontology [5], have been presented
over the last years. They support the process of ontology engi-
neering by specifying phases ranging from the initial planing to
long-term maintenance cycles and detail the role of different kinds
of actors, such as domain experts, users, and knowledge engineers.
Originally, researchers envisioned a stacked approach in which lo-
cal, application-centric ontologies are developed by refining the ter-
minology from domain ontologies which, in turn, use top-level on-
tologies as common and domain-independent foundation [12]. Be-
sides advantages such as reusability and quality control at the upper
levels, the stacked approach has some major drawbacks. First, it
does not support a staged introduction of semantics and ontologies
as the development of application-centric ontologies requires the
existence of commonly agreed domain and top-level ontologies.
Second, domain experts and knowledge engineers have to under-
stand and agree to the hundreds of statements encoded at the upper-
levels, while they can hardly influence them or request changes.

Ontology design patterns [8] offer a flexible alternative to the
stacked approach. They are best thought of as strategies or build-
ing blocks that support domain experts and knowledge engineers



in modeling recurring problems. While they are analogous to the
highly successful software engineering patterns [7], different kinds
of ontology design patterns can be distinguished. Examples in-
clude logical patterns, content patterns, or alignment patterns. Log-
ical patterns are workarounds to problems which are a consequence
of the formal semantics of the used knowledge representation lan-
guage. Consequently, they are independent of specific domains or
applications. Content patterns, in contrast, are strategies or building
blocks applied to model frequently occuring domain facts. While
patterns may vary in size and complexity, they are usually self-
contained and minimal in terms of their ontological commitments.
Many successful ontology design patterns have been developed in
recent years. For instance, most parts of the DOLCE Ultra Light
foundational ontology have been repackaged into a collection of
patterns. One example of a pattern relevant for GIScience is the
Stimulus-Sensor-Observation (SSO) pattern that forms the core of
the W3C SSN-XG semantic sensor network ontology and has been
used in several applications [2]. Other examples include a pattern
for referential qualities introduced by Ortmann and Daniel [27].

For a highly diverse research community such as the geosciences, a
pattern based approach to employing semantics for data publishing,
discovery, reuse, and integration is promising for several reasons.
First, and even within highly specialized disciplines, it is difficult
to reach agreement on a common definition for domain vocabu-
lary. Aligning these definitions with abstract classes from top-level
ontologies such as endurants and perdurants is even more challeng-
ing. As discussed by Galton [6] many geographic feature types are
multi-aspect phenomena which can be classified as events or phys-
ical objects at the same time – lenticular clouds or waves being
common examples. Similarly, hills can be defined as physical ob-
jects, features, or amount of matter [32] which are among the core
distinctions proposed by the DOLCE foundational ontology [9] for
modeling physical endurants. Consequently, while many patterns
have been developed and are actively applied, domain ontologies
for the geosciences are largely missing – SWEET being a rare ex-
ception [28]. Second, it is a common misconception that interop-
erability can only be established (similar to interlingual machine
translation) by aligning local, application centric ontologies with
a common and global top-level ontology. Instead, ontologies can
be directly combined using alignment methods and servers such as
AgreementMaker [3], BLOOMS [18], or the Alignment API [4].
Patterns improve the quality of alignments by fostering horizontal
integration. Third, patterns foster semantic interoperability without
restricting the heterogeneity brought in by local ontologies that re-
flect multiple perspectives on geographic space [19]. This is espe-
cially important for knowledge infrastructures such as NSF’s Earth-
Cube [14] that exploit the variety component of Big Data [20].

In this work, we introduce a logical pattern that allows ontology
engineers to model the quantification over types. This is a fre-
quent modeling problem for geo-ontologies and cannot be directly
approached in any of the standardized Semantic Web knowledge
representation languages. As a logical pattern, our work is inde-
pendent of a specific application and is, therefore, highly reusable.
The proposed pattern can be applied to model concepts such as
cartographic scale or biodiversity. For instance, it can capture the
effect that during the process of cartographic abstraction, and de-
pending on the selected scale, certain types of features, e.g., sights,
are removed while others, e.g., hospitals, are introduced [24, 29].

The remainder of this paper is structured as follows. First, we
set the preliminaries relevant to the understanding of the proposed

work by recalling key aspects of the OWL knowledge representa-
tion language. Next, in section 3, we introduce our new language
primitive to model the quantification over types in OWL. Besides
defining the logical pattern, we also present a macro to ease ontol-
ogy engineering. As the long-term success of an ontology design
pattern is evaluated by its applicability to model different domain
facts, section 4 describes how to use the pattern. While we focus on
the case of biodiversity, other examples are highlighted in addition.
We also point out existing limitations of our current implementa-
tion, namely reasoning in the presence of ambiguous data. We con-
clude the paper with summarizing the presented work and pointing
to further research. Note that section 3 also contains a technical
theorem which supports the feasibility of our proposed pattern. For
reasons of readability, the formal proof of this theorem is moved to
the appendix.

2. PRELIMINARIES
We start by introducing the description logic (DL) SROIQ, the
logic underpinning the Web Ontology Language’s profile OWL
2 DL [15]. This definition is included to make the paper self-
contained. Due to space constrains we only recall key aspects here.
For a more detailed definition see [17]; a gentle introduction is
given in [16].

The description logic language SROIQ is based on a signature
Σ = 〈NI , NC , NR, NV 〉, where NI , NC , NR, and NV are finite
and pairwise disjoint sets of individual names, concept names, role
names, and variables. The set NR is partitioned into disjoint sets
Ns

R of simple role names and Nn
R of non-simple role names as de-

fined in [17]. For the rest of this paper, we assume that a signature
Σ has been fixed and so omit further references to it.

Definition 1. The sets C of SROIQ concepts (or classes) and
R (Rs/Rn) of (simple/non-simple) SROIQ roles (called proper-
ties in the OWL 2 specification) are defined by the grammar

Rs ::= Ns
R | (Ns

R)− | U
Rn ::= Nn

R | (Nn
R)− | U

R ::= Rs | Rn

C ::= > | ⊥ | NC | {NI} | ¬C | C uC | C tC |
∃R.C | ∀R.C | ∃Rs.Self | 6kRs.C | >kRs.C

where k is any non-negative integer. U is the universal role, and >
and⊥ are the top and bottom concepts. Concepts {a} with a ∈ NI

are called nominals. O denotes the set of nominals.

Roles of the form R− with R ∈ Ns
R ∪Nn

R are called inverse roles.
We define a function Inv : R → R as follows: For R ∈ NR, set
Inv(R) := R− and Inv(R−) := R.

SROIQ knowledge bases (KB) are constructed from axioms as
follows:

Definition 2. Given roles R, Si ∈ R, a generalized role inclu-
sion axiom (RIA) is a statement of the form S1 ◦ · · · ◦Sk v R, with
either R /∈ Rn, or k = 1 and S1 ∈ Rs. A set of RIAs is regular if
there is a strict partial order ≺ on R such that

• if R /∈ {S, Inv(S)}, then S ≺ R if and only if Inv(S) ≺ R;
and



Table 1: Semantics of SROIQ: I an interpretation; A,B ∈ NC ; C,D ∈ C; V ∈ NR; R(i), S ∈ R; a ∈ NI ; x ∈ NV ; t, u ∈ T.

Name Syntax Semantics

concept name A AI ⊆ ∆I

role name V V I ⊆ ∆I ×∆I

individual name a aI ∈ ∆I

top > ∆I

bottom ⊥ ∅
existential restriction ∃R.C {δ | there is ε with 〈δ, ε〉 ∈ RI and ε ∈ CI}
universal restriction ∀R.C {δ | for all ε with 〈δ, ε〉 ∈ RI we have ε ∈ CI}
self restriction ∃R.Self {δ | 〈δ, δ〉 ∈ RI}
concept complement ¬C ∆I \ CI
concept conjunction C uD CI ∩DI
concept disjunction C tD CI ∪DI
qualified number restrictions 6nR.C {δ | #{〈δ, ε〉 ∈ RI | ε ∈ CI} ≤ n}

>nR.C {δ | #{〈δ, ε〉 ∈ RI | ε ∈ CI} ≥ n}

universal role U ∆I ×∆I

inverse role V − {〈δ, ε〉 | 〈ε, δ〉 ∈ V I}

concept assertion (ABox) A(t) tI ∈ AI
role assertion (ABox) V (t, u) 〈tI , uI〉 ∈ V I
TBox axiom C v D CI ⊆ DI
RBox axiom (RIA) R v S RI ⊆ SI

R1 ◦ · · · ◦Rn v S RI1 ◦ · · · ◦RIn ⊆ SI
where ‘◦’ denotes the usual composition of binary relations

• every RIA has the form R ◦ R v R, Inv(R) v R, R ◦ S1 ◦
· · · ◦ Sk v R, S1 ◦ · · · ◦ Sk ◦R v R, or S1 ◦ · · · ◦ Sk v R,
with R, Si ∈ R and Si ≺ R for each i ∈ {1, . . . , k}.

An RBox axiom is a RIA. A TBox axiom (or general concept inclu-
sion axiom, GCI) is an expression C v D where C,D ∈ C. An
ABox axiom is any expression of the form C(a) or R(a, b) where
C ∈ NC , R ∈ NR, and a, b ∈ NI . A SROIQ axiom is any
ABox, TBox, or RBox axiom, and a SROIQ knowledge base is
a set of SROIQ axioms such that the subset of RBox axioms is
regular.

The semantics of SROIQ knowledge bases is defined in model-
theoretic terms as usual, following Table 1.

All role assertions but role disjointness disj(S, Inv(S)) can be
expressed using the set of presented constructors and therefore
we do not explicitly include them in the definition: asymme-
try (disj(S, Inv(S)), reflexivity (> v ∃Saux.Self, Saux v R), ir-
reflexivity (∃S.Self v ⊥), symmetry (Inv(R) v R), transitivity
(R ◦R v R).

The empty (bottom) role N can also be defined as syntactic sugar
via the axiom ∃N.> v ⊥.

For ease of notation, we will make use of a restricted form of the
concept product construct in DLs [30]. We restrict this to axioms
of the form R v D×D, where R is a role and D is a concept. For
the purpose of this paper (and this restricted use), we can simply

think of this as a macro: R v D ×D expands to the two axioms

∃R.> v D i.e., D is the domain of R
> v ∀R.D i.e., D is the range of R.

Recall, that the semantics of the Web Ontology Language OWL ad-
heres to the Open World Assumption (OWA): statements which are
not logical consequences of a given knowledge base are not nec-
essarily considered false. The OWA is a reasonable assumption to
make in the World Wide Web context (and thus for Semantic Web
applications). However, for the definition of the pattern in the next
section we require some form of Closed World Assumption (CWA)
for some concepts. That is, some statements which are not logi-
cal consequences of a given knowledge base should be considered
false.

There are several prominent ways how to add closed world reason-
ing to OWL, see e.g. [21, 22] for comprehensive overviews. For
the purpose of our specific pattern we make use of the grounded cir-
cumscription approach presented in [31] that allows us to include
a form of Local Closed World Assumption (LCWA) [11] for some
classes in the knowledge base. We explain this is more detail later.

3. THE PATTERN
In this section, we introduce the proposed logical pattern to model
the quantification over types and discuss an OWL macro to make
the new language construct available to ontology engineers and do-
main experts. We also briefly discuss a proposal for a correspond-
ing extension of the standardized OWL syntax, and prove a the-
oretical result concerning algorithmization of reasoning with this
pattern. Application examples of the pattern will be given in sec-
tion 4.



3.1 Introducing the Pattern
We first present the formal definition for the logical pattern which
we propose, and will then discuss the rationale behind it from a
bird’s eye perspective.

The pattern which we introduce is used for type-count comparison
– we correspondingly call it the type-count comparison pattern.
Syntactically, we write it as

R ≡ D ×D|C1,...,Cn ,

where R is a role name, and D and the Ci are concepts.

Intuitively, the semantics of this pattern is as follows: Two indi-
viduals x and y shall be connected by the role R if and only if x
is contained in strictly more different classes Ci than y. E.g., say
x is contained in C1 and C5 (but not in any other Ci, while y is
contained in C2 (but not in any other Cj), then we would like to
infer R(x, y). The notation using a vertical bar is borrowed from a
very common mathematical notation used for restricting functions
to subsets of their domains.

While this informal explanation of the pattern is intuitively appeal-
ing, it is not entirely straightforward to cast it into a formal seman-
tics. While we will give a formal semantics in section 3.3 below,
let us try to shed some light on the difficulties by contemplating an
abstract example.

Consider the knowledge base consisting of the following state-
ments.

R ≡ >×>|C1,C2

C1(a)

C2(a)

C1(b)

From this knowledge base we would like to infer R(a, b), since a
is known to be contained in the two classes C1 and C2, while b is
only known to be contained in C1.

However, now assume we add the axiom C2(b) to the knowledge
base. Under this new knowledge base, we would no longer infer
R(a, b), since both a and b are contained in two of the classes.
Note that the addition of the axiom C2(b) means that a previously
drawn inference, namely R(a, b), is no longer a valid inference.
This observation shows that we are in fact considering a so-called
non-monotonic semantics. Such non-monotonic semantics usually
arise in the context of some kind of (local) world closure as dis-
cussed at the end of section 2.

In our formal semantics we will therefore have to reflect this, and
introduce some non-monotonic semantic construct. We will discuss
this further in section 3.3.

Before we continue with our formal treatment, however, let us first
introduce a much more convenient macro. Indeed, the notation

R ≡ D ×D|C1,...,Cn

introduced above is cumbersome if n, i.e., the number of classes
used in the type count, is large. It would be preferable to have a
notation which does not require the explicit listing of all n classes
as part of the pattern.

To do this, we make use of the so-called punning feature available

in OWL 2, which makes it possible to use classes also as individu-
als in the same knowledge base. More precisely, we introduce the
notation

R ≡|C D ×D

as a macro for

R ≡ D ×D|C1,...,Cn ,

where C1, . . . , Cn are exactly all individuals contained in the class
C. The Ci are in this case used both as indivicuals and as concepts,
which is allowed due to OWL 2 punning. The semantics of pun-
ning in OWL 2 furthermore guarantees that there are no unwanted
inferences (see, e.g., the explanations in [16]). To make sure that
there are no other additional – unwanted – inferences, and to en-
sure that the expansion of the macro is straightforward, we have
to impose two very mild conditions: On the one hand, we impose
that we have ABox statements C(Ci), for all i = 1, . . . , n. On
the other hand, we impose that the concept name C is not used for
any other purpose in the knowledge base. This way, we can easily
retrieve all Ci by a simple SPARQL query [33] over the knowledge
base.

3.2 Functional Syntax
We define a syntax for the pattern as an extension of the OWL 2
Functional Syntax [25]. We do this by minimally modifying the
existing grammar specification, and by adding a new reserved word
to express the type-count comparison pattern.

Consider the pattern macro

R ≡|C D ×D.

We first need to add classes Ci as instances of the class C, so we
just list them as instances of the class using the existing syntax:

ClassAssertion( C Ci )

We reserve a new word TypeCountComparison to express the actual
pattern:

SubObjectPropertyOf( TypeCountComparison( D C ) R )

To include this type of axioms in the functional syntax we make the
following modifications to the grammar. We modify the production
rule of the non-terminal SubObjectPropertyOf to:

SubObjectPropertyOf :=
’SubObjectPropertyOf’ ’(’ axiomAnnotations
subObjectPropertyExpression
superObjectPropertyExpression ’)’ |
’SubObjectPropertyOf’ ’(’ axiomAnnotations
TypeCountComparison superObjectPropertyExpression ’)’

We also include a new production rule for the new non-terminal
TypeCountComparison:

TypeCountComparison :=
’TypeCountComparison(’ ClassExpression ClassExpression ’)’

We have chosen to use “SubObjectPropertyOf” to represent the
pattern, because (i) reusing an existing keyword makes for a light-
weight modification to the existing grammar, and because (ii) the
pattern can very well also be understood as a sub-property construct
of sorts.



Table 2: Expansion of R ≡ D ×D|C1,...,Cn

Close(Ci) (1)

for all 1 ≤ i ≤ n.

R v D ×D (2)
D v N0,0 (3)

Nm−1,k u ¬Cm v Nm,k (4)
Nm−1,k u Cm v Nm,k+1 (5)

where all Ni,j are freshly introduced classes where m = 1, . . . , n
and k = 1, . . . ,m− 1 for every m.

Nn,i v ∃Si.Self (6)

where i = 0, . . . , n.

Si ◦R ◦ Sj v RtypeCountViolation (7)

for all i ≤ j where j = 0, . . . , n.

Si ◦ U ◦ Sj v R (8)

for all i > j where i = 1, . . . , n.

3.3 Formal Semantics and Reasoning
We now turn to specifying the formal semantics of our type-count
comparison pattern

R ≡ D ×D|C1,...,Cn .

In fact, we provide the formal semantics by means of understanding
the pattern as a macro, which expands to a set of SROIQ axioms
together with a number of closure specifications in the sense of
grounded circumscription [31]. Indeed, the pattern is expanded to
the set of axioms listed in Table 2. Let us try to give some intuitive
explanations for the axioms.

Axiom (1) lists closure predicates in the sense of grounded circum-
scription. According to [31], a statement such as Close(Ci) means
two things. On the one hand, it means that the class Ci contains
only known individuals, i.e., it contains only individuals which are
named entities in the knowledge base. On the other hand, it means
that the class Ci contains only individuals which are necessarily
contained in it – in the sense that there is no model for the knowl-
edge base where only a subset of these is contained in Ci.

Of course, the explanations just given need to be formally specified,
and this is done in [31] – and we refrain from repeating formal
details. However, let us return to the example from section 3.1,
where the non-monotonic nature of our pattern was first discussed.
Due to the statement Close(C2) we indeed obtain that – before the
addition of C2(b) to the knowledge base – we can infer ¬C2(b)
from the knowledge base, as desired. Of course, after addition of
C2(b) we infer C2(b), also as desired, and we see that this kind of
closure captures non-monotonicity as required for our purpose.

Let it be remarked here that the use of grounded circumscription
for the purpose of this paper is by no means the only choice. How-
ever, as argued in [31], grounded circumscription appears to be a
rather intuitive approach to world closure, which also appears to
be compatible with OWL design choices. In fact, for simple cases
such as the ones in which our pattern may be used, the semantics of
the different approaches for non-monotonicity will likely coincide
anyway. Investigating the most useful ways of introducing world

closure to description logics is a topic currently under investiga-
tion, and while the basic (and, arguably, practically relevant) cases
are reasonably well understood, theoretical foundations are still be-
ing worked out (see, e.g., [21]).

Returning to Table 2, axiom (2) is simply the expected domain and
range restriction for R.

Axioms (3) to (5) are more trickly. The key idea behind them is that
of counting, for each x in D, how many of the classes Ci contain
x. This is done in such a way that x is contained in exactly m of
the classes Ci if x is contained in the class Nn,m. Axiom (6) is
then a sort of typecasting, called rolification [23], which captures
membership of x in the class Nn,i in terms x being related to itself
by the freshly introduced role Si. This typecasting is required for
later use in axioms (8) and (9).

The axioms (7) can be understood as constraints which capture vi-
olations in the data. To understand this, consider the knowledge
base consisting of the following statements.

R ≡ >×>|C1,C2,C3,C4

C1(a)

C1(b)

C2(b)

R(a, b)

In this case, we would obtain RtypeCountViolation(a, b) as logical con-
sequence of the knowledge base. Thus, if desired, the knowledge
base can be queried for such violations in the data, in order to take
appropriate action. We have chosen this axiomatization as a service
to the user, who can utilize this to inspect the knowledge base in
order to search for incomplete or contradictory information. This
approach to capturing data violations is indeed very common in
rule-based systems, including logic programming.

Let us dwell on this a little longer, and briefly discuss an alter-
native axiomatization, which is realized by adding the statement
RtypeCountViolation ≡ N , which declares RtypeCountViolation to be equiva-
lent to the bottom (i.e., empty) role. At first sight, one might expect
that the resulting knowledge base is inconsistent. However, it is
not. Rather, in any model a would have to be contained in addi-
tional classes Ci, e.g., we may have a also contained in C3 and C4.
This means that additional class memberships are now infered due
to the non-monotonic nature of grounded circumscription. Note
that our base pattern can be used either way, by either additionally
including, or not, the axiom RtypeCountViolation ≡ N .

The axioms (8), which utilize the top role U , specify that two in-
dividuals x and y are indeed related through R if x is contained in
strictly more classes Ci than y is.

The explanations just given already provide a clear understanding
why our treatment of the pattern captures the intended meaning.
We have also already given some examples which show how the
pattern can be put to work. As a sort of formal support for our
proposed pattern, we now also provide the following theorem.

THEOREM 1. Let K be a SROIQ knowledge base (not con-
taining conceptsC1, . . . , Cn or any sub-formulas of these concepts
in the TBox), and let K′ be the knowledge base which results from



adding the type-count comparison pattern

R ≡ >×>|C1,...,Cn

to K. Furthermore, for any individual a in K let

c(a) = |{i | K |= Ci(a)}|,

i.e., c(a) is the number of different classes Ci of which a can be
infered to be an element.

(i) Then c(a) > c(b) implies K′ |= R(a, b).

Now assume furthermore that there is no pair (a, b) of individuals
such that K |= RtypeCountViolation(a, b).

(ii) Then K′ |= R(a, b) also implies c(a) > c(b).

A formal proof of this theorem can be found in the appendix.
The assumptions made for the statement of the theorem are rather
strong, in order to avoid an extensive formal treatment which would
feel out of place in this paper. We will discuss some of these as-
sumptions at the end of section 4.1.

The expansion from Table 2 does not only provide a formal se-
mantics for our pattern, but also shows how automated reasoning
with the pattern can be realized. Indeed, it was shown in [31] that
adding grounded circumscriptive closure axioms to OWL retains
decidability, and that this can be handled algorithmically.

Furthermore, note that the number of axioms into which

R ≡ >×>|C1,...,Cn

is expanded is in fact polynomial (more precisely, quadratic) in n.
So adding the pattern to grounded circumscriptive SROIQ does
not cause any increase in the computational complexity of the lan-
guage. Note, however, that grounded circumscription itself in gen-
eral causes a rise in complexity compared to the base language.
But this is avoidable in specific cases which may often apply to use
cases of our pattern.

4. APPLICATION OF THE PATTERN
In this section we outline how the presented logical pattern can be
applied to model challenging domain facts that could not be spec-
ified in any Semantic Web knowledge representation language be-
fore. While we focus on biodiversity as example, other application
areas will be highlighted as well. It is important to note that our ex-
amples are simplified for demonstration purpose, we do not claim
that they capture all of the relevant scientific work, complex inter-
play, and nuances. The definition of domain knowledge is up to
the respective experts, while our task as ontology engineers is to
develop the methods that enable the logical representation of this
knowledge [19].

4.1 Application to Biodiversity
Biodiversity is a major concept in ecology and evolutionary biol-
ogy. For instance, it is studied in ecological forecasting to estimate
the future development of ecosystems in response to environmental
change. Due to the range of involved scientific disciplines, different
measures, and indices, it is difficult to agree on a common, ’simple,
comprehensive, and fully operational’ [26] definition of biodiver-
sity. This makes the proposed pattern approach in which commu-
nities can maintain their own definitions more attractive than trying

to arrive at a common and stable global definition. Simplifying,
’[b]iodiversity is the totality of genes, species, and ecosystems in
a region’ [35]. Species diversity is one type of biodiversity and
can be expressed in terms of species richness and species even-
ness [13]. We will restrict our example to the first component
and just focus on species richness as the count of different species
in a given region.

This apparently trivial definition highlights two challenges for the
engineering of ontologies.1 First, the term count is difficult to cap-
ture and unclear in terms of its logical consequences. Second, the
quantification is done over different types, not individuals. Each
single species should be modeled as a class to ensure that the for-
mal semantics of OWL can be employed for reasoning, e.g., to au-
tomatically select all species of the Squamata Order such as snakes
and lizards. Strictly speaking, this calls for a second-order language
and cannot be directly expressed in OWL DL, thus, requiring our
proposed logical pattern.

The first mentioned difficulty is a classic in communicating about
ontologies between domain experts interested in conceptual mod-
eling and knowledge engineers interested in the inferential power
of their knowledge representation languages. Natural language de-
scriptions such as count of different species in a given region do
not translate well to a set-theoretic semantics. To address this, we
propose to translate such definitions to binary relationships. The re-
lation will holds between two regions and could be labeled is more
biodiverse than, or short imbt. Put simply, given two habitats h1

and h2, imbt(h1, h2) holds if, and only if, h1 has a greater count
of different species than h2. Strictly speaking, from a GIS perspec-
tive, we need to introduce a topological inside relation between a
region represented as a polygon and point-like observations of in-
dividuals. For each individual of a distinct type, we conclude that
this species occurs in the given region.2 The imbt relation allows
us to employ the inferential semantics of OWL by using reason-
ing services, e.g., to infer imbt relations between regions. This was
not possible with the original definition given before. The second
part, i.e., the quantification over types, will be addressed using our
proposed pattern as follows. It will also ensure that we only count
distinct species.

We work out a simple example for the pattern to improve the un-
derstandability of the approach. We will use the biodiversity case
previously described. Assume we have a knowledge base with only
three different species, S1, S2, and S3, where we want to model the
property

imbt ≡ E × E|∃habitatOf.S1,∃habitatOf.S2,∃habitatOf.S3 ,

where E stands for the class of ecosystems.

We list all the new axioms that the transformation of the primitive
will produce:

Close(∃habitatOf.S1)
Close(∃habitatOf.S2)
Close(∃habitatOf.S3)

These closure statements play a central role for our pattern. In-
tuitively, their effect is as follows. Assume there is an ecosystem
e, and that there is no positive evidence or data whatsoever which
1which will, thus, also appear in more complex definitions of bio-
diversity and related concepts.
2In practice, we often know which species to expect.



would suggest that e is a habitat of species S1. Then, the closure
axioms above make it possible to conclude ¬∃habitatOf.S1(e),
which would not be possible under the open world assumption.

imbt v E × E
E v N0,0

Axiom imbt v E ×E is a macro for axioms > v ∀imbt.E (range
of imbt is E) and ∃imbt.> v E (domain of imbt is E) as stated in
section 2. With these two we set the domain and range of property
imbt to the class E.

N0,0 u ¬∃habitatOf.S1 v N1,0

N0,0 u ∃habitatOf.S1 v N1,1

Note that concepts N1,0 and N1,1 are disjoint and that for every in-
dividual e in E we can conclude N1,0(e) (due to the closure predi-
cate) unless we have evidence to the contrary.

N1,0 u ¬∃habitatOf.S2 v N2,0

N1,0 u ∃habitatOf.S2 v N2,1

N1,1 u ¬∃habitatOf.S2 v N2,1

N1,1 u ∃habitatOf.S2 v N2,2

The observation just given carries through the chain of Ni,j predi-
cates.

N2,0 u ¬∃habitatOf.S3 v N3,0

N2,0 u ∃habitatOf.S3 v N3,1

N2,1 u ¬∃habitatOf.S3 v N3,1

N2,1 u ∃habitatOf.S3 v N3,2

N2,2 u ¬∃habitatOf.S3 v N3,2

N2,2 u ∃habitatOf.S3 v N3,3

We now have that, for a knowledge base containing this set of ax-
ioms, every individual e ∈ E is contained in at most one N3,x

where the x determines the number of different species inhabiting
the ecosystem.

N3,0 v ∃S0.Self
N3,1 v ∃S1.Self
N3,2 v ∃S2.Self
N3,3 v ∃S3.Self

Roles Si can be used in role chains to check the number of different
species that inhabit a given ecosystem.

S0 ◦ imbt ◦ S0 v RtypeCountViolation

S0 ◦ imbt ◦ S1 v RtypeCountViolation

S0 ◦ imbt ◦ S2 v RtypeCountViolation

S0 ◦ imbt ◦ S3 v RtypeCountViolation

S1 ◦ imbt ◦ S1 v RtypeCountViolation

S1 ◦ imbt ◦ S2 v RtypeCountViolation

S1 ◦ imbt ◦ S3 v RtypeCountViolation

S2 ◦ imbt ◦ S2 v RtypeCountViolation

S2 ◦ imbt ◦ S3 v RtypeCountViolation

The previous set of axioms flags a possible violation. This occurs
when the imbt property has been defined to hold between two in-
dividuals while the data does not support this. Typically, this func-
tionality will be exploited during ontology engineering, data entry,

or cleaning of the knowledge base.

S1 ◦ U ◦ S0 v imbt
S2 ◦ U ◦ S0 v imbt
S2 ◦ U ◦ S1 v imbt
S3 ◦ U ◦ S0 v imbt
S3 ◦ U ◦ S1 v imbt
S3 ◦ U ◦ S2 v imbt

This last set of axioms automatically produces the imbt connec-
tions between individuals x ∈ E. Note that, as stated in the proof,
the whole set of axioms added to the knowledge base is polynomial
with respect to the number of ∃habitatOf.Si classes in the knowl-
edge base.

Consider now the following example knowledge base.

E(e1) E(e2) E(e3)

S1(s11) S2(s21) S3(s31)

S1(s12) S2(s22) S3(s32)

habitatOf(e1, s11) habitatOf(e1, s21)

habitatOf(e1, s31) habitatOf(e2, s11)

habitatOf(e2, s12) habitatOf(e2, s21)

habitatOf(e2, s22) habitatOf(e3, s21)

habitatOf(e3, s31) habitatOf(e3, s32)

imbt(e2, e3)

imbt ≡ E × E|∃habitatOf.S1,∃habitatOf.S2,∃habitatOf.S3

The last of these axioms is expanded as just described. The ex-
panded knowledge base now implies, amongst others, the following
statements.

N0,0(e1) N0,0(e2) N0,0(e3)

N1,1(e1) N1,1(e2) N1,0(e3)

N2,2(e1) N2,2(e2) N2,1(e3)

N3,3(e1) N3,2(e2) N3,2(e3)

Note that these inferences require the closure axioms as described.
We furthermore obtain as logical consequences

∃S3.Self(e1) ∃S2.Self(e2) ∃S2.Self(e3)

and therefore also

imbt(e1, e2)

imbt(e1, e3)

RtypeCountViolation(e2, e3)

as expected.

The example just given shows how the pattern can be used. How-
ever, in case of ambiguous data, there are also cases in which
the pattern may no support the full range of logical consequences.
This can happen, for example, if a field scientist is uncertain about
species membership of an observed plant or animal. To understand
these difficulties, consider the following knowledge base.



E(e1) E(e2)

S1,2 ≡ S1 t S2

S1,2(s)

habitatOf(e1, s)
imbt ≡ E × E|∃habitatOf.S1,∃habitatOf.S2,∃habitatOf.S3

Some logical consequences of this knowledge base are
N0,0(e1) N0,0(e2) N1,0(e2) N2,0(e2) N3,0(e2).
However, we can infer neither N1,0(e1) nor N1,1(e1) due to
the ambiguity of the data, and consequently we do not have a
count for the number of species in e1 – and thus fail to infer
imbt(e1, e2) while the data would suggest this. The assumptions
made in Theorem 1 serve to focus on the basic settings (although,
in general, the theorem will carry over to more general settings,
provided data ambiguity is avoided).

4.2 Application to Further Use Cases
As a logical pattern, our work is domain independent and can be
applied to a variety of modeling problems in the geosciences and
beyond. While we focused on the species richness aspect of bio-
diversity in the previous section, the pattern can also be adapted
to model species evenness. It can also be applied to model other
diversities as well as variety which is one of the key characteris-
tics of data-intensive science. To give another example, one could
model neighborhoods in cities based on the different composition
of types of Points Of Interest (POI). Following the same argumen-
tation, the pattern could also be expanded to meta-model the dy-
namics of semantic heterogeneity within knowledge infrastructures
such as NSF’s Earthcube. Further application areas include mod-
eling the changing relation between feature types and cartographic
scale discussed in the introduction.

In general, the pattern can be applied to those definitions that can
be translated to binary relationships and require a (total or relative)
numerical sizing of different classes (or individuals). In practice,
logical pattern are not used alone but will typically be combined
with content patterns such as the SSO and referential qualities pat-
terns mentioned before.

5. CONCLUSIONS & OUTLOOK
In this paper, we argued for a logical pattern to quantify over types
and explained why this cannot be modeled in any Semantic Web
language directly. As a logical pattern, our work is independent of
a specific use case and can be applied equally well to geographic
features types of Points of Interest as well as to species in study-
ing biodiversity. In combination with content patterns, our work
will support the creation of local, purpose-driven ontologies, and,
thus, support a staged approach of introducing semantics to knowl-
edge infrastructures such as NSF’s EarthCube, instead of hoping
for commonly agreed domain ontologies to come. As argued be-
fore, a pattern-based approach can foster semantic interoperability
without restricting the diversity of interdisciplinary research. We
showed how the pattern is formally constructed, made it available
to ontology engineers and domain experts as an OWL macro, and
specified reasoning strategies. We discussed how the pattern can
be applied to model species richness as part of biodiversity and
also highlighted other application areas to show generalizability.

Our work also shows that the expressivity argument often brought
forward as limiting factor for modeling complex ontologies can be

approached by developing ready-to-use and packaged strategies.
Besides continuing the development of geo-ontology design pat-
terns, we also plan to work on methods that assist engineers and
domain experts in finding appropriate patterns and understanding
which logical and content patterns can be combined. So-called
GeoVoCamps that bring domain expert and knowledge engineers
together to work on concrete, purpose-driven ontologies and se-
mantic technologies, offer the environment to refine existing pat-
terns, identify needs for further patterns, and understand the differ-
ent viewpoints on geospatial semantics.

Finally, as follow-up work, we intend to refine the pattern to real-
ize a better coverage of cases with ambiguous and uncertain data.
We also intend to explore the benefits and drawbacks of using al-
ternative modeling approaches to world closure, such as MKNF
description logics [21].
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APPENDIX
THEOREM 1. Let K be a SROIQ knowledge base (not con-

taining conceptsC1, . . . , Cn or any sub-formulas of these concepts
in the TBox), and let K′ be the knowledge base which results from
adding the type-count comparison pattern

R ≡ >×>|C1,...,Cn

to K. Furthermore, for any individual a in K let

c(a) = |{i | K |= Ci(a)}|,

i.e., c(a) is the number of different classes Ci of which a can be
infered to be an element.

(i) Then c(a) > c(b) implies K′ |= R(a, b).

Now assume furthermore that there is no pair (a, b) of individuals
such that K |= RtypeCountViolation(a, b).

(ii) Then K′ |= R(a, b) also implies c(a) > c(b).



PROOF. We substitute R ≡ > × >|C1,...,Cn by the set of
SROIQ axioms defined by the transformation in Table 2. We
start by proving statement (i) of the theorem, i.e., that c(a) > c(b)
implies K′ |= R(a, b).

By axiom (1) we have that all concepts Ci, where 1 ≤ i ≤ n, are
closed. Consequently, we have that either K |= Ci(a) or K |=
¬Ci(a), where 1 ≤ i ≤ n, for every individual a. We can assert
this due to the fact that the concepts Ci and their sub formulas do
not appear in the Tbox – and that the Ci are also closed.

By axiom (2) we have that if K′ |= R(a, b), then K′ |= >(a)
and K′ |= >(b) also hold. The choice of the > concept simplifies
the definition and the theorem. In case we want to quantify over
an arbitrary concept D, it is easy to see that the proof carries on
easily just by substituting the appearances of the > concept in the
proof by the class D. That is the reason for the appearance of the
> concept in the proof.

Axiom (3) makes the class > a subclass of N0,0. By axioms (3)-
(5), we have that K |= >(e) and for every 1 ≤ j ≤ n there is a
unique x ≤ j such that K |= Nj,x(e). Due to axioms (4) and (5)
we have that K′ |= Nx,y(e) if and only if e is also contained in y
different classes Ci, where i ≤ x.

Therefore, we have that for all K′ |= >(e) also K′ |= Nn,y(e),
where the y marks the number of different classes Ci s.t. K |=
Ci(e) where 1 ≤ i ≤ n. By axiom (6) we have that if K |=
Nn,y(e) then K′ |= Sy(e, e). Axiom (8) enforces the creation of
the R role according to the given definition in the theorem making
use of the roles Si. Therefore we have that R(a, b) is an inference
of K′ for all pairs of individuals (a, b) s.t. c(a) > c(b).

Note that, as part of the definition, we make the assumption that
there is no RtypeCountViolation(x, y) entailed by K′. We make use
of this assumption to prove part (ii) of the theorem. If K′ |=
RtypeCountViolation(x, y) we have that there is no pair of individuals
such thatK′ |= (Si◦R◦Sj)(x, y) for all i ≤ j, where 1 ≤ j ≤ n,
by axiom (7).

As shown in the previous part of the proof we have that roles Si

mark the number of different classes Ci a given individual is in.
Combined with the fact K 6|= (Si ◦ R ◦ Sj)(x, y), for all i ≤ j,
where 1 ≤ j ≤ n, we can say that there is no R(a, b) entailed by
K′ where c(a) ≤ c(b).


