Semantic Web – State of the Art

Pascal Hitzler
Kno.e.sis Center
Wright State University, Dayton, OH
http://www.knoesis.org/pascal/
Introduction to key foundations

Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

Foundations of Semantic Web Technologies

Chapman & Hall/CRC, 2010

Choice Magazine Outstanding Academic Title 2010 (one out of seven in Information & Computer Science)

http://www.semantic-web-book.org
Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph

语义Web技术基础
Tsinghua University Press (清华大学出版社)，2012, to appear

Translators:
Yong Yu, Haofeng Wang, Guilin Qi (俞勇，王昊奋，漆桂林)

http://www.semantic-web-book.org
Semantic Web journal

• EiCs: Pascal Hitzler
 Krzysztof Janowicz

• New journal with significant initial uptake.

• We very much welcome contributions at the “rim” of traditional Semantic Web research – e.g., work which is strongly inspired by a different field.

• Non-standard (open & transparent) review process.

• http://www.semantic-web-journal.net/
Contents

• What is Semantic Web?
 – Limitations of the current World Wide Web
 – The basic Semantic Web idea
 – Semantic Web Semantics
• Semantic Data Web (state of the art)
 – its limitations
 – and how to overcome them
• Some current work
The current (World Wide) Web

- Immensely successful.
- Huge amounts of data.
- Syntax standards for transfer of structured data.

BUT:

- Content/knowledge cannot be accessed by machines.
 Meaning (semantics) of transferred data is not accessible.
Examples

- Find that landmark article on data integration written by an Indian researcher in the 1990s. [If you manage this without knowing the answer, let me know how you did it.]

- Which car is called a “duck” in German? [This needs some intelligent integration of content from different websites plus background knowledge.]
Another example

“Identify congress members, who have voted “No” on pro environmental legislation in the past four years, with high-pollution industry in their congressional districts.”

In principle, all the required knowledge is on the Web – most of it even in machine-readable form.
However, without automated processing and reasoning we cannot obtain a useful answer.
Very brief history of the Semantic Web

- 1990s: W3C metadata activity (lead to RDF(S))
- USA: DAML-Programme 2000-2005 approx. $90M.
- Many large scale EU projects since 2002 and ongoing! FP6/FP7
- Major IT companies and venture capital now investing.
Semantic Technologies in the US

• Funding available e.g. via
 – NIH
 – NSF
 – DoD, DoE, AFRL
 – IARPA, DARPA
 – ...

• Considerable industrial take-up
 – Annual Semantic Technology Conference in CA
 Taylored towards industry
 – Major IT players (Oracle, IBM, HP, ...) invest
 – Major government contractors (BBN, Lockheed, ...)
 – Venture capital (e.g. Vulcan, Inc.).
Contents

• What is Semantic Web?
 – Limitations of the current World Wide Web
 – The basic Semantic Web idea
 – Semantic Web Semantics
• Semantic Data Web (state of the art)
 – its limitations
 – and how to overcome them
• Some current work
Basic Idea of the Semantic Web

Ontology represents schema knowledge
 e.g. every publication has an author

Data e.g. on Websites

DL Rules
Krötzsch, Rudolph, Hitzler
ECAI 2008
Basic Idea of the Semantic Web

e.g. every publication has an author
Basic Idea of the Semantic Web

Ontology represents
Schema knowledge
e.g. every publication has an author

Data e.g. on Websites

DL Rules
Krötzsch, Rudolph, Hitzler
ECAI 2008
Contents

• What is Semantic Web?
 – Limitations of the current World Wide Web
 – The basic Semantic Web idea
 – Semantic Web Semantics
• Semantic Data Web (state of the art)
 – its limitations
 – and how to overcome them
• Some current work
What Is Semantic Web Semantics?

- Opinions Differ. Here’s my take.

- Semantic Web requires a shareable, declarative and *computable* semantics.
- I.e., the semantics must be a formal entity which is clearly defined and automatically computable.

- Ontology languages provide this by means of their formal semantics.
- Semantic Web Semantics is given by a relation – the *logical consequence* relation.

- Note: This is considerably more than saying that the semantics of an ontology is the set of its logical consequences!
In other words

We capture the meaning of information

not by specifying its meaning (which is impossible)
but by specifying

how information interacts with other information.

We describe the meaning indirectly through its effects.
Simple Logical Reasoning

If I ask for soccer team members, I also want to get the goalkeepers listed ...

If I ask for cities, I also want all capitals listed ...

inheritance reasoning
Less Simple Reasoning

What was again the name of that Russian researcher who worked on resolution-based calculi for EL?

Which car is called „duck“ in German?

What is "Käuzchen" in English?

Answering requires merging of knowledge from many websites and using background knowledge.
SNOMED CT

- **SNOMED CT**: commercial ontology, medical domain
ca. 300,000 axioms

- **InjuryOfFinger** \(\vdash \) **Injury u 9site.Finger_{S}**
- **InjuryOfHand** \(\vdash \) **Injury u 9site.Hand_{S}**
- **Finger_{S}** \(\lor \) **Hand_{P}**
- **Hand_{P}** \(\lor \) **Hand_{S} u 9part.Hand_{E}**

- Reasoning has been used e.g. for
 - classification (computing the hidden taxonomy)
 e.g., **InjuryOfFinger \lor InjuryOfHand**
 - bug finding
Reasoning Needs

Inspired by presentation by Evan Sandhaus, ISWC2010

\[x \text{ newsFrom rome .} \]
\[rome \text{ locatedIn italy .} \]

we want to conclude:
\[x \text{ newsFrom italy .} \]

Take your news database.
Take location info from somewhere on linked data.
Materialize the new newsFrom triples.
Reasoning Needs

\[x \text{ newsFrom } rome . \quad \text{newsFrom}(x,y) \]

\[rome \text{ locatedIn } italy . \quad \text{locatedIn}(y,z) \]

we want to conclude:

\[x \text{ newsFrom } italy . \quad \text{newsFrom}(x,z) \]

\[\text{newsFrom}(x,y) \land \text{locatedIn}(y,z) \implies \text{newsFrom}(x,z) \]

\[\text{newsFrom o locatedIn} v \text{ newsFrom} \]

using owl:propertyChainAxiom
Reasoning Needs

e.g. knowledge base of authors and papers

<paper> hasAuthor <author> .
insufficient because author order is missing

use of RDF-lists not satisfactory due to lack of formal semantics.

better:

<paper> hasAuthorNumbered _:x .
_:x authorNumber n^^xsd:positiveInteger ;
authorName <author> .
hasAuthorNumbered(x,y) \ AEauthorName(y,z) ! hasAuthor(x,z)
Reasoning Needs

\[
\text{hasAuthorNumbered}(_x) \quad \text{authorNumber} \quad n^{\text{xsd:positiveInteger}} ;
\text{authorName} \quad <\text{author}> .
\]

\[
\text{hasAuthorNumbered}(x,y) \land \text{authorName}(y,z) ! \quad \text{hasAuthor}(x,z)
\]

in OWL:

\[
\begin{align*}
\text{Paper} & \lor \text{9hasAuthorNumbered. NumberedAuthor} \\
\text{NumberedAuthor} & \lor \\
\text{9authorNumber.} & \langle \text{xsd:positiveInteger} \rangle \lor \text{9authorName.} >
\end{align*}
\]

\[
\text{hasAuthorNumbered} \pm \text{authorName} \lor \text{hasAuthor}
\]

these are not rules!
Reasoning Needs

Paper \(\forall \) hasAuthorNumbered.NumberedAuthor
NumberedAuthor \(\forall \)
9authorNumber.<xsd:positiveInteger> \(\cup \) 9authorName.>
hasAuthorNumbered \(\pm \) authorName \(\forall \) hasAuthor

\[
\text{Paper}(x) \ \forall \text{hasAuthorNumbered}(x,y) \ \forall \text{authorNumber}(y,1) \ \forall \\
\text{authorName}(y,z) \ \nexists \ \text{hasFirstAuthor}(x,z)
\]

in OWL:

\[
\text{Paper} \ \nexists \ \text{9paper.Self} \\
\text{9authorNumber.\{1\}} \ \nexists \ \text{9authorNumberOne.Self} \\
\text{paper} \ \nexists \ \text{hasAuthorNumbered} \ \nexists \ \text{authorNumberOne} \ \nexists \ \text{authorName} \\
\n\forall \ \text{hasFirstAuthor}
\]
Reasoning as first-class citizen

Why would we want to have knowledge/rules such as
newsFrom(x,y) \supseteq locatedIn(y,z) \iff newsFrom(x,z)
if we can also just do this with some software code?

- It declaratively describes what you do.
- It separates knowledge (as knowledge base) from programming.
- It makes knowledge shareable.
- It makes knowledge easier to maintain.
So what happened?

• In 2004, two W3C Recommendations were completed:
 – RDF + RDF Schema with formal model-theoretic semantics
 – OWL with formal model-theoretic semantics

• OWL 2 update emerged 2009.
• RDF update is being discussed right now.
Ontology languages

- Of central importance for the realisation of Semantic Technologies are suitable representation languages.
- Meaning (semantics) provided via logic and deduction algorithms.
- Scalability is a challenge.

Language standards recommended by W3C
Ontology Example

Declaration of classes

rdfs:Class

x:Professor

x:PhD-Student

x:Tutor

x:Employee

x:Student

subClass

instantiation

Declaration of properties

rdfs:domain

rdfs:range

x:Professor

x:PhD-Student

x:Employee

x:Student

x:email

x:advises

x:responsible_for

x:supervises

rdfs:subPropertyOf

schema knowledge

PhDStudent(v) \land \neg advisedBy(v, Professor)

rules

\neg responsible_for(y, x) \land \exists Professor(y)

\land Employee(x)
Contents

• What is Semantic Web?
 – Limitations of the current World Wide Web
 – The basic Semantic Web idea
 – Semantic Web Semantics
• Semantic Data Web (state of the art)
 – its limitations
 – and how to overcome them
• Some current work
Basic Idea of the Semantic Web

Ontology represents schema knowledge
- e.g. every publication has an author

Data e.g. on Websites

DL Rules
Krötzsch, Rudolph, Hitzler
ECAI 2008

fact knowledge
Currently it’s looking like this

Data e.g. on Websites

facts only. (almost) no schema knowledge

DL Rules
Krötzsch, Rudolph, Hitzler
ECAI 2008
Linked Open Data
Mashups

die neuesten 30 Anzeigen von insgesamt 22101

Hinweise:
Aus technischen Gründen können nur ca. 65% unserer Anzeigen mit der Unikodetexte gefunden werden. Alle Angebote findest du hier.
Wenn Deine Wohnung/MA in dieser Karte erscheinen soll, dann muß Du sie zu unseren Wohnungsangeboten hinzufügen.

<table>
<thead>
<tr>
<th>Stadt</th>
<th>Art</th>
<th>Größe (m²)</th>
<th>Preis (€)</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>München</td>
<td>VO</td>
<td>17m²</td>
<td>320€</td>
<td>01.09.06</td>
</tr>
<tr>
<td>Düsseldorf</td>
<td>VO</td>
<td>26m²</td>
<td>340€</td>
<td>15.06.06</td>
</tr>
<tr>
<td>Köln</td>
<td>VO</td>
<td>30m²</td>
<td>265€</td>
<td>15.06.06</td>
</tr>
<tr>
<td>Göttingen</td>
<td>VO</td>
<td>16m²</td>
<td>183€</td>
<td>01.10.06</td>
</tr>
<tr>
<td>Hannover</td>
<td>VO</td>
<td>20m²</td>
<td>180€</td>
<td>01.09.06</td>
</tr>
<tr>
<td>Trier</td>
<td>VO</td>
<td>13m²</td>
<td>190€</td>
<td>01.09.06</td>
</tr>
<tr>
<td>Göttingen</td>
<td>VO</td>
<td>16m²</td>
<td>170€</td>
<td>01.09.06</td>
</tr>
<tr>
<td>Düsseldorf</td>
<td>1 Zi.</td>
<td>22m²</td>
<td>200€</td>
<td>15.06.06</td>
</tr>
<tr>
<td>Passau</td>
<td>VO</td>
<td>17m²</td>
<td>156€</td>
<td>01.09.06</td>
</tr>
<tr>
<td>Bielefeld</td>
<td>VO</td>
<td>16m²</td>
<td>230€</td>
<td>01.09.06</td>
</tr>
<tr>
<td>Dresden</td>
<td>VO</td>
<td>17m²</td>
<td>150€</td>
<td>30.08.06</td>
</tr>
<tr>
<td>Konstanz</td>
<td>1 Zi.</td>
<td>25m²</td>
<td>210€</td>
<td>12.08.06</td>
</tr>
<tr>
<td>Berlin</td>
<td>VO</td>
<td>20m²</td>
<td>300€</td>
<td>01.09.06</td>
</tr>
<tr>
<td>Berlin</td>
<td>VO</td>
<td>15m²</td>
<td>210€</td>
<td>01.09.06</td>
</tr>
<tr>
<td>Dresden</td>
<td>1 Zi.</td>
<td>45m²</td>
<td>218€</td>
<td>15.06.06</td>
</tr>
<tr>
<td>Berlin</td>
<td>VO</td>
<td>16m²</td>
<td>189€</td>
<td>10.06.06</td>
</tr>
<tr>
<td>Köln</td>
<td>1 Zi.</td>
<td>24m²</td>
<td>225€</td>
<td>01.09.06</td>
</tr>
<tr>
<td>Köln</td>
<td>VO</td>
<td>17m²</td>
<td>253€</td>
<td>01.09.06</td>
</tr>
<tr>
<td>Berlin</td>
<td>VO</td>
<td>13m²</td>
<td>175€</td>
<td>01.08.06</td>
</tr>
</tbody>
</table>
Mashups – GEOtweets
Contents

• What is Semantic Web?
 – Limitations of the current World Wide Web
 – The basic Semantic Web idea
 – Semantic Web Semantics
• Semantic Data Web (state of the art)
 – its limitations
 – and how to overcome them
• Some current work
Example: GeoNames

<table>
<thead>
<tr>
<th>Populated Place Features (city, village,...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,518,403 P.PPL: populated place a city, town, village, or other agglomeration of buildings where people live and work</td>
</tr>
<tr>
<td>48,483 P.PPLX: section of populated place</td>
</tr>
<tr>
<td>39,336 P.PPLL: populated locality an area similar to a locality but with a small group of dwellings or other buildings</td>
</tr>
<tr>
<td>13,306 P.PPLQ: abandoned populated place</td>
</tr>
<tr>
<td>2,684 P.PPLA4: seat of a fourth-order administrative division</td>
</tr>
<tr>
<td>2,028 P.PPLA: seat of a first-order administrative division seat of a first-order administrative division (PPLC takes precedence over PPLA)</td>
</tr>
<tr>
<td>1,847 P.PPLW: destroyed populated place a village, town or city destroyed by a natural disaster, or by war</td>
</tr>
<tr>
<td>1,006 P.PPLF: farm village a populated place where the population is largely engaged in agricultural activities</td>
</tr>
<tr>
<td>930 P.PPLA3: seat of a third-order administrative division</td>
</tr>
<tr>
<td>695 P.PPLA2: seat of a second administrative division</td>
</tr>
<tr>
<td>253 P.PPLS: populated places cities, towns, villages, or other agglomerations of buildings where people live and work</td>
</tr>
<tr>
<td>249 P.STLMT: israeli settlement</td>
</tr>
<tr>
<td>235 P.PPLC: capital of a political entity</td>
</tr>
<tr>
<td>57 P.</td>
</tr>
<tr>
<td>29 P.PPLR: religious populated place a populated place whose population is largely engaged in religious occupations</td>
</tr>
<tr>
<td>6 P.PPLG: seat of government of a political entity</td>
</tr>
</tbody>
</table>

rdfs:subClassOf?
“Nancy Pelosi voted in favor of the Health Care Bill.”

- Vote: 2009-887
- Bills: h3962
- H.R. 3962: Affordable Health Care for America Act
- Votes: 2009-887/+ Aye
- people/P000197 Nancy Pelosi
Example: GovTrack

```
bills/h3962 \ dc:title \ "H.R. 3962: ..." ;
  \ usbill:hasAction \ _:bnode0 .
_:bnode0 \ usbill:vote \ votes/2009-887 .
votes/2009-887 \ vote:hasOption \ votes/2009-887/+ .
votes/2009-887/+ \ dc:title \ "On Passage: H.R. 3962 ..." ;
  \ rdfs:label \ "Aye" ;
  \ vote:votedBy \ people/P000197 .
person/P000197 \ usgovt:name \ "Nancy Pelosi" .
```
Example querying LoD

“Identify congress members, who have voted “No” on pro environmental legislation in the past four years, with high-pollution industry in their congressional districts.”

In principle, all the knowledge is there:

• GovTrack
• GeoNames
• DBPedia
• US Census

But even with LoD we cannot answer this query.
“Identify congress members, who have voted “No” on pro environmental legislation in the past four years, with high-pollution industry in their congressional districts.”

Some missing puzzle pieces:

- Where is the data?
 - GovTrack
 - GeoNames
 - US Census

requires intimate knowledge of the LoD data sets
Example querying LoD

“Identify congress members, who have voted “No” on pro \textbf{environmental legislation} in the past four years, with \textbf{high-pollution industry} in their congressional districts.”

Some missing puzzle pieces:

- Where is the data? (smart federation needed)
- Missing background (schema) knowledge. (enhancements of the LoD cloud)
- Crucial info still hidden in texts. (ontology learning from texts)
- Added reasoning capabilities (e.g., spatial). (new ontology language features)
Don’t get me wrong

Linked Open Data is great, useful, cool, and a very important step.

But we need to make use of the added value of formal semantics in order to advance towards the Semantic Web vision!
Contents

• What is Semantic Web?
 – Limitations of the current World Wide Web
 – The basic Semantic Web idea
 – Semantic Web Semantics

• Semantic Data Web (state of the art)
 – its limitations
 – and how to overcome them

• Some current work
To leverage LoD, we require **schema knowledge**
- application-type driven (reusable for same kind of application)
- less messy than LoD (as required by application)
- overarching several LoD datasets (as required by application)
Schema on top of the LoD cloud
Contents

• **What is Semantic Web?**
 – Limitations of the current World Wide Web
 – The basic Semantic Web idea
 – Semantic Web Semantics
• **Semantic Data Web (state of the art)**
 – its limitations
 – and how to overcome them
• **Some current work**
LOQuS – Querying Linked Open Data

Work in progress.
- Schema creation for
 - query federation
 - utilizing background knowledge
 - compilation of LOD knowledge into reason-able form
- Reasoning algorithm (on suitable language) for very efficient data-intensive reasoning
Table 4. Results of various systems for LOD Schema Alignment. Legends: Prec=Precision, Rec=Recall, M=Music Ontology, B=BBC Program Ontology, F=FOAF Ontology, D=DBpedia Ontology, G=Geonames Ontology, S=SIOC Ontology, W=Semantic Web Conference Ontology, A=AKT Portal Ontology, err=System Error, NA=Not Available

<table>
<thead>
<tr>
<th>Alignment API</th>
<th>OMViaUO</th>
<th>RiMoM</th>
<th>S-Match</th>
<th>AROMA</th>
<th>BLOOMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>Prec</td>
<td>Rec</td>
<td>Prec</td>
<td>Rec</td>
<td>Prec</td>
</tr>
<tr>
<td>M,B</td>
<td>0.4</td>
<td>0</td>
<td>err</td>
<td>err</td>
<td>0.04</td>
</tr>
<tr>
<td>M,D</td>
<td>0</td>
<td>0</td>
<td>err</td>
<td>err</td>
<td>0.08</td>
</tr>
<tr>
<td>F,D</td>
<td>0</td>
<td>0</td>
<td>err</td>
<td>err</td>
<td>0.11</td>
</tr>
<tr>
<td>G,D</td>
<td>0</td>
<td>0</td>
<td>err</td>
<td>err</td>
<td>0.23</td>
</tr>
<tr>
<td>S,F</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>0.2</td>
<td>0.52</td>
</tr>
<tr>
<td>W,A</td>
<td>0.12</td>
<td>0.05</td>
<td>0.16</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>W,D</td>
<td>0</td>
<td>0</td>
<td>err</td>
<td>err</td>
<td>0.15</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.07</td>
<td>0.01</td>
<td>0.17</td>
<td>0</td>
<td>NA</td>
</tr>
</tbody>
</table>

Jain, Hitzler et al, ISWC2010
Table 1. Results on the oriented matching track. Results for RiMOM and AROMA have been taken from the OAEI 2009 website. Legends: Prec=Precision, A-API=Alignment API, OMV=OMViaUO, NaN=division by zero, likely due to empty alignment.

<table>
<thead>
<tr>
<th>Test</th>
<th>A-API</th>
<th>OMV</th>
<th>S-Match</th>
<th>AROMA</th>
<th>RiMoM</th>
<th>BLOOMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prec</td>
<td>Rec</td>
<td>Prec</td>
<td>Rec</td>
<td>Prec</td>
<td>Rec</td>
</tr>
<tr>
<td>1XX</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0.06</td>
<td>0.01</td>
<td>0.71</td>
</tr>
<tr>
<td>2XX</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.30</td>
</tr>
<tr>
<td>3XX</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
<td>0.047</td>
<td>0.01</td>
<td>0.14</td>
</tr>
<tr>
<td>Avg.</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.04</td>
<td>0.03</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Ontology Alignment Initiative—Oriented Matching Track
1. **Pre-processing of the input ontologies** in order to (i) remove property restrictions, individuals, and properties, and to (ii) tokenize composite class names to obtain a list of all simple words contained within them, with stop words removed.

2. **Construction of the BLOOMS forest** T_C for each class name C, using information from Wikipedia.

3. **Comparison of constructed BLOOMS forests**, which yields decisions which class names are to be aligned.

4. **Post-processing** of the results with the help of the Alignment API and a reasoner.
Fig. 1. BLOOMS trees for Jazz Festival with sense Jazz Festival and for Event with sense Event. To save space, some categories are not expanded to level 4.
1. **Pre-processing of the input ontologies** in order to (i) remove property restrictions, individuals, and properties, and to (ii) tokenize composite class names to obtain a list of all simple words contained within them, with stop words removed.

2. **Construction of the BLOOMS forest** T_C for each class name C, using information from Wikipedia.

3. **Comparison of constructed BLOOMS forests**, which yields decisions which class names are to be aligned.

4. **Post-processing** of the results with the help of the Alignment API and a reasoner.
1. Pre-processing of the input ontologies in order to (i) remove property restrictions, individuals, and properties, and to (ii) tokenize composite class names to obtain a list of all simple words contained within them, with stop words removed.

2. Construction of the BLOOMS forest T_C for each class name C, using information from Wikipedia.

3. Comparison of constructed BLOOMS forests, which yields decisions which class names are to be aligned.

4. Post-processing of the results with the help of the Alignment API and a reasoner.

) We’re currently evaluating the LOQuS querying approach while utilizing BLOOMS.
Reasoning: useful scalable languages

- OWL 2: complexity > exponential
- SROELVn: complexity = polynomial [WWW2011]
- OWL 2 EL and RL: complexity = polynomial
- hybrid SROELVn + Datalog: data complexity = polynomial [follows from AIJ2011]
Thanks!

Collaborators on the covered topics:

Kno.e.lab: David Carral Martinez, Amit Joshi, Adila Krisnadhi, Fred Maier, Kunal Sengupta, Cong Wang
Kno.e.sis: Prateek Jain, Amit Sheth
Accenture: Kunal Verma, Peter Z. Yeh
Karlsruhe: Sebastian Rudolph
Lisboa: Matthias Knorr, Jose J. Alferes
Oxford: Markus Krötzsch
UCSB: Krzysztof Janowicz

http://www.semantic-web-book.org
http://www.semantic-web-journal.net
References

References

References

- Shasha Huang, Qingguo Li, Pascal Hitzler, Reasoning with Inconsistencies in Hybrid MKNF Knowledge Bases. Logic Journal of the IGPL. To appear.

- Frederick Maier, Yue Ma, Pascal Hitzler, Paraconsistent OWL and Related Logics. Semantic Web journal. To appear.
References

• Matthias Knorr, Jose Julio Alferes, Pascal Hitzler, Local Closed-World Reasoning with Description Logics under the Well-founded Semantics. Artificial Intelligence 175(9-10), 2011, 1528-1554.

References

References

References
