Integrating Logic Programs and Connectionist Systems

Sebastian Bader, Steffen Hölldobler
International Center for Computational Logic
Technische Universität Dresden
Germany

Pascal Hitzler
Institute of Applied Informatics and Formal Description Methods
Technische Universität Karlsruhe
Germany

"Logic is everywhere ..."
Introduction & Motivation: Overview

- Introduction & Motivation
- Propositional Logic
 - Existing Approaches
 - Propositional Logic Programs and the Core Method
- First-Order Logic
 - Existing Approaches
 - First-Order Logic Programs and the Core Method
- The Neural-Symbolic Learning Cycle
- Challenge Problems
Introduction & Motivation: Connectionist Systems

- Well-suited to learn, to adapt to new environments, to degrade gracefully etc.
- Many successful applications.
- Approximate functions.
 - Hardly any knowledge about the functions is needed.
 - Trained using incomplete data.
- Declarative semantics is not available.
- Recursive networks are hardly understood.
- McCarthy 1988: We still observe a propositional fixation.
- Structured objects are difficult to represent.
 - Smolensky 1987: Can we instantiate the power of symbolic computation within fully connectionist systems?
Introduction & Motivation: Logic Systems

- Well-suited to represent and reason about structured objects and structure-sensitive processes.
- Many successful applications.
- Direct implementation of relations and functions.
- Explicit expert knowledge is required.
- Highly recursive structures.
- Well understood declarative semantics.
- Logic systems are brittle.
- Expert knowledge may not be available.

Can we instantiate the power of connectionist computation within a logic system?
Introduction & Motivation: Objective

▶ Seek the best of both paradigms!
▶ Understanding the relation between connectionist and logic systems.
▶ Contribute to the open research problems of both areas.
▶ Well developed for propositional case.
▶ Hard problem: going beyond.
▶ In this lecture:
 ▶ Overview on existing approaches.
 ▶ Logic programs and recurrent networks.
 ▶ Semantic operators for logic programs can be computed by connectionist systems.
Connectionist Networks

- A connectionist network consists of
 - a set U of units and
 - a set $W \subseteq U \times U$ of connections.

- Each connection is labeled by a weight $w \in \mathbb{R}$.
- If there is a connection from unit u_j to u_k, then w_{kj} is its associated weight.
- A unit is specified by
 - an input vector $\vec{i} = (i_1, \ldots, i_m)$, $i_j \in \mathbb{R}$, $1 \leq j \leq m$,
 - an activation function Φ mapping \vec{i} to a potential $p \in \mathbb{R}$,
 - an output function Ψ mapping p to an (output) value $v \in \mathbb{R}$.

- If there is a connection from u_j to u_k then $w_{kj}v_j$ is the input received by u_k along this connection.
- The potential and value of a unit are synchronously recomputed (or updated).
- Often a linear time t is added as parameter to input, potential and value.
- The state of a network with units u_1, \ldots, u_n at time t is $(v_1(t), \ldots, v_n(t))$.
Propositional Logic

▶ Existing Approaches

▷ Finite Automata and McCulloch-Pitts Networks
▷ Weighted Automata and Semiring Artificial Neural Networks
▷ Propositional Reasoning and Symmetric/Stochastic Networks
▷ Other Approaches

▶ Propositional Logic Programs and the Core Method

▷ The Very Idea
▷ Logic Programs
▷ Propositional Core Method
▷ Backpropagation
▷ Knowledge-Based Artificial Neural Networks
▷ Propositional Core Method using Sigmoidal Units
▷ Further Extensions
Finite Automata and McCulloch-Pitts Networks

- **McCulloch, Pitts 1943:**
 Can the activities of nervous systems be modelled by a logical calculus?
- A **McCulloch-Pitts network** consists of a set U of binary threshold units and a set $W \subseteq U \times U$ of weighted connections.
- The set U_I of input units is defined as $U_I = \{ u_k \in U \mid (\forall u_j \in U) w_{kj} = 0 \}$.
- The set U_O of output units is defined as $U_O = \{ u_j \in U \mid (\forall u_k \in U) w_{kj} = 0 \}$.

Theorem McCulloch-Pitts networks are finite automata and vice versa.
Binary Threshold Units

- u_k is a binary threshold unit if

$$\Phi(\vec{i}_k) = p_k = \sum_{j=1}^{m} w_{kj} v_j$$
$$\Psi(p_k) = v_k = \begin{cases} 1 & \text{if } p_k \geq \theta_k \\ 0 & \text{otherwise} \end{cases}$$

where $\theta_k \in \mathbb{R}$ is a threshold.

- Three binary threshold units:

1. $v_1, w_{21} = -1, \theta_2 = -0.5, v_2 = \neg v_1$
2. $v_1, w_{31} = 1, \theta_3 = 0.5, v_3 = v_1 \lor v_2$
3. $v_1, w_{31} = 1, \theta_3 = 1.5, v_3 = v_1 \land v_2$
Bader, Hölldobler, Scalzitti 2004:
Can the result by McCulloch and Pitts be extended to weighted automata?

Let \((K, \oplus, \odot, 0_K, 1_K)\) be a semiring.

\(u_k\) is a \(\oplus\)-unit if
\[
\Phi(\vec{v}_k) = p_k = \bigoplus_{j=1}^{m} w_{kj} \odot v_j
\]
\[
\Psi(p_k) = v_k = p_k
\]

\(u_k\) is a \(\odot\)-unit if
\[
\Phi(\vec{v}_k) = p_k = \bigodot_{j=1}^{m} w_{kj} \odot v_j
\]
\[
\Psi(p_k) = v_k = p_k
\]

A semiring artificial neural network consists of a set \(U\) of \(\oplus\)- and \(\odot\)-units and a set \(W \subseteq U \times U\) of \(K\)-weighted connections.

Theorem Weighted automata are semiring artificial neural networks.
Symmetric Networks

▶ **Hopfield 1982**: Can statistical models for magnetic materials explain the behavior of certain classes of networks?

▶ **A symmetric network** consists of a set U of binary threshold units and a set $W \subseteq U \times U$ of weighted connections such that $w_{kj} = w_{jk}$ for all k, j with $k \neq j$.

▶ Asynchronous update procedure:
while state \vec{v} is unstable: update an arbitrary unit.

▶ Minimizes the energy function $E(\vec{v}) = - \sum_{k<j} w_{kj}v_j v_k + \sum_k \theta_k v_k$.
Stochastic Networks or Boltzmann Machines

- **Hinton, Sejnowski 1983**: Can we escape local minima?
- A **stochastic network** is a symmetric network, but the values are computed probabilistically

\[
P(v_k = 1) = \frac{1}{1 + e^{(\theta_k - p_k)/T}}
\]

where \(T \) is called **pseudo temperature**.

- In equilibrium stochastic networks are more likely to be in a state with low energy.
- **Kirkpatrick et al. 1983**: Can we compute a global minima?
- **Simulated annealing**: decrease \(T \) gradually.
- **Theorem (Geman, Geman 1984)**
 A global minima is reached if \(T \) is decreased in infinitesimal small steps.
Propositional Reasoning and Energy Minimization

- **Pinkas 1991:**
 Is there a link between propositional logic and symmetric networks?

- Let $D = \langle C_1, \ldots, C_m \rangle$ be a propositional formula in clause form.

- We define

 $$
 \tau(C) = \begin{cases}
 0 & \text{if } C = [], \\
 p & \text{if } C = [p], \\
 1 - p & \text{if } C = [\neg p], \\
 \tau(C_1) + \tau(C_2) - \tau(C_1)\tau(C_2) & \text{if } C = (C_1 \lor C_2).
 \end{cases}
 $$

 $$
 \tau(D) = \sum_{i=1}^{m} (1 - \tau(C_i))
 $$

- **Example**

 $$
 \tau(\langle [\neg o, m], [\neg s, \neg m], [\neg c, m], [\neg c, s], [\neg v, \neg m] \rangle) = vm - cm - cs + sm - om + 2c + o.
 $$
Propositional Reasoning and Symmetric Networks

- **Theorem** \(\vec{v} \models D \) iff \(\tau(D) \) has a global minima at \(\vec{v} \).
- **Compare**
 \[
 \tau(D) = \nu m - \nu m - \nu s + \nu \nu m - \nu m + 2\nu + \nu
 \]
 with
 \[
 E(\vec{v}) = -\sum_{k<j} \nu w_{kji}\nu_j \nu_k + \sum_k \theta_k \nu_k.
 \]
Propositional Non-Monotonic Reasoning

- Pinkas 1991a:
 Can the above mentioned approach be extended to non-monotonic reasoning?

- Consider $D = \langle (C_1, k_1), \ldots, (C_m, k_m) \rangle$, where C_i are clauses and $k_i \in \mathbb{R}^+$.

- The penalty of \vec{v} for (C, k) is k if $\vec{v} \not\models C$ and 0 otherwise.

- The penalty of \vec{v} for D is the sum of the penalties for (C_i, k_i).

- \vec{v} is preferred over \vec{w} wrt D if the penalty of \vec{v} for D is smaller than the penalty of \vec{w} for D.

- Modify τ to become $\tau(D) = \sum_{i=1}^{m} k_i (1 - \tau(C_i))$, e.g.,

 \[
 \tau(\langle ([\neg o, m], 1), ([\neg s, \neg m], 2), ([\neg c, m], 4), ([\neg c, s], 4), ([\neg v, \neg m], 4) \rangle)
 = 4vm - 4cm - 4cs + 2sm - om + 8c + o.
 \]

- The corresponding stochastic network computes most preferred interpretations.
Propositional Logic Programs and the Core Method

- The Very Idea
- Logic Programs
- Propositional Core Method
- Backpropagation
- Knowledge-Based Artificial Neural Networks
- Propositional Core Method using Sigmoidal Units
- Further Extensions
The Very Idea

- Various semantics for logic programs coincide with fixed points of associated immediate consequence operators (e.g., Apt, vanEmden 1982).

- **Banach Contraction Mapping Theorem** A contraction mapping f defined on a complete metric space (X, d) has a unique fixed point. The sequence $y, f(y), f(f(y)), \ldots$ converges to this fixed point for any $y \in X$.

 - **Fitting 1994**: Consider logic programs, whose immediate consequence operator is a contraction.

- **Funahashi 1989**: Every continuous function on the reals can be uniformly approximated by feedforward connectionist networks.

 - **Hölldobler, Kalinke, Störr 1999**: Consider logic programs, whose immediate consequence operator is continuous on the reals.
Metrics

A metric on a space \(M \) is a mapping \(d : M \times M \to \mathbb{R} \) such that

- \(d(x, y) = 0 \) iff \(x = y \),
- \(d(x, y) = d(y, x) \), and
- \(d(x, y) \leq d(x, z) + d(z, y) \).

Let \((M, d)\) be a metric space and \(S = (s_i \mid s_i \in M) \) a sequence.

- \(S \) converges if \((\exists s \in M)(\forall \epsilon > 0)(\exists N)(\forall n \geq N) d(s_n, s) \leq \epsilon \).
- \(S \) is Cauchy if \((\forall \epsilon > 0)(\exists N)(\forall n, m \geq N) d(s_n, s_m) \leq \epsilon \).
- \((M, d)\) is complete if every Cauchy sequence converges.

A mapping \(f : M \to M \) is a contraction on \((M, d)\) if \((\exists 0 < k < 1)(\forall x, y \in M) d(f(x), f(y)) \leq k \cdot d(x, y) \).
Propositional Logic Programs

- A propositional logic program \(P \) over a propositional language \(\mathcal{L} \) is a finite set of clauses

\[
A \leftarrow L_1 \land \ldots \land L_n,
\]

where \(A \) is an atom, \(L_i \) are literals and \(n \geq 0 \).

\(P \) is definite if all \(L_i, 1 \leq i \leq n \) are atoms.

- Let \(\mathcal{V} \) be the set of all propositional variables occurring in \(\mathcal{L} \).

- An interpretation \(I \) is a mapping \(\mathcal{V} \rightarrow \{\top, \bot\} \).

- \(I \) can be represented by the set of atoms which are mapped to \(\top \) under \(I \).

- \(2^\mathcal{V} \) is the set of all interpretations.

- Immediate consequence operator \(T_P : 2^\mathcal{V} \rightarrow 2^\mathcal{V} : \)

\[
T_P(I) = \{ A \mid \text{there is a clause } A \leftarrow L_1 \land \ldots \land L_n \in P \text{ such that } I \models L_1 \land \ldots \land L_n \}.
\]

- \(I \) is a supported model iff \(T_P(I) = I \).
The Core Method

- Let \mathcal{L} be a logic language.
- Given a logic program \mathcal{P} together with immediate consequence operator $T_{\mathcal{P}}$.
- Let \mathcal{I} be the set of interpretations for \mathcal{P}.
- Find a mapping $R : \mathcal{I} \rightarrow \mathbb{R}^n$.
- Construct a feed-forward network computing $f_{\mathcal{P}} : \mathbb{R}^n \rightarrow \mathbb{R}^n$, called the core, such that the following holds:
 - If $T_{\mathcal{P}}(I) = J$ then $f_{\mathcal{P}}(R(I)) = R(J)$, where $I, J \in \mathcal{I}$.
 - If $f_{\mathcal{P}}(\vec{s}) = \vec{t}$ then $T_{\mathcal{P}}(R^{-1}(\vec{s})) = R^{-1}(\vec{t})$, where $\vec{s}, \vec{t} \in \mathbb{R}^n$.
- Connect the units in the output layer recursively to the units in the input layer.
- Show that the following holds
 - $I = \text{lfp}(T_{\mathcal{P}})$ iff the recurrent network converges to or approximates $R(I)$.

Connectionist model generation using recurrent networks with feed forward core.
3-Layer Recurrent Networks

At each point in time all units do:

- apply activation function to obtain potential,
- apply output function to obtain output.
Propositional Core Method using Binary Threshold Units

- Let \(\mathcal{L} \) be the language of propositional logic over a set \(\mathcal{V} \) of variables.
- Let \(\mathcal{P} \) be a propositional logic program, e.g.,

\[
\mathcal{P} = \{ A, C \leftarrow A \land \neg B, C \leftarrow \neg A \land B \}.
\]

- \(\mathcal{I} = 2^\mathcal{V} \) is the set of interpretations for \(\mathcal{P} \).
- \(T_\mathcal{P}(I) = \{ A \mid A \leftarrow L_1 \land \ldots \land L_m \in \mathcal{P} \text{ such that } I \models L_1 \land \ldots \land L_m \} \).

\[
\begin{align*}
T_\mathcal{P}(\emptyset) &= \{ A \} \\
T_\mathcal{P}(\{ A \}) &= \{ A, C \} \\
T_\mathcal{P}(\{ A, C \}) &= \{ A, C \} = \text{lfp}(T_\mathcal{P})
\end{align*}
\]
Representing Interpretations

- $\mathcal{I} = 2^\mathcal{V}$
- Let $n = |\mathcal{V}|$ and identify \mathcal{V} with $\{1, \ldots, n\}$.
- Define $R : \mathcal{I} \rightarrow \mathbb{R}^n$ such that for all $1 \leq j \leq n$ we find:

$$R(I)[j] = \begin{cases} 1 & \text{if } j \in I, \\ 0 & \text{if } j \not\in I. \end{cases}$$

E.g., if $\mathcal{V} = \{A, B, C\} = \{1, 2, 3\}$ and $I = \{A, C\}$ then $R(I) = (1, 0, 1)$.
- Other encodings are possible, e.g.,

$$R(I)[j] = \begin{cases} 1 & \text{if } j \in I, \\ -1 & \text{if } j \not\in I. \end{cases}$$
Computing the Core

- Consider again $\mathcal{P} = \{ A, C \leftarrow A \land \neg B, C \leftarrow \neg A \land B \}$.
- A translation algorithm translates \mathcal{P} into a core of binary threshold units:

```
  A   B   C
  \frac{3}{2} \frac{3}{2} \frac{3}{2}
  \frac{3}{2} \frac{3}{2} \frac{3}{2}
  \frac{1}{2} \frac{1}{2} \frac{1}{2}
```

- Input layer
- Hidden layer
- Output layer
Some Results

- **Proposition** 2-layer networks cannot compute T_P for definite P.
- **Theorem** For each program P, there exists a core computing T_P.
- **Recall** $P = \{A, \ C \leftarrow A \land \lnot B, \ C \leftarrow \lnot A \land B\}$.
- **Adding recurrent connections:**
More Results

▶ A logic program \mathcal{P} is said to be strongly determined if there exists a metric d on the set of all Herbrand interpretations for \mathcal{P} such that $T_{\mathcal{P}}$ is a contraction wrt d.

▶ Corollary Let \mathcal{P} be a strongly determined program. Then there exists a core with recurrent connections such that the computation with an arbitrary initial input converges and yields the unique fixed point of $T_{\mathcal{P}}$.

▶ Let n be the number of clauses and m be the number of propositional variables occurring in \mathcal{P}.

- $2m + n$ units, $2mn$ connections in the core.
- $T_{\mathcal{P}}(I)$ is computed in 2 steps.
- The parallel computational model to compute $T_{\mathcal{P}}(I)$ is optimal.
- The recurrent network settles down in $3n$ steps in the worst case.

Rule Extraction (1)

▶ Proposition

For each core C there exists a program \mathcal{P} such that C computes $T_\mathcal{P}$.

```
<table>
<thead>
<tr>
<th>$u_1$</th>
<th>$u_2$</th>
<th>$u_3$ p3</th>
<th>$u_3$ v3</th>
<th>$u_4$ p4</th>
<th>$u_4$ v4</th>
<th>$u_5$ p5</th>
<th>$u_5$ v5</th>
<th>$u_6$ p6</th>
<th>$u_6$ v6</th>
<th>$u_7$ p7</th>
<th>$u_7$ v7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1.5</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
<td>0.8</td>
<td>1</td>
<td>1.8</td>
<td>1</td>
<td>.7</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-.5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>.7</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2.5</td>
<td>1</td>
<td>-.7</td>
<td>0</td>
<td>.3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>.7</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Rule Extraction (2)

Extracted program:

\[
P = \{ A_1 \leftarrow \neg A_1 \land \neg A_2, \\
 A_1 \leftarrow \neg A_1 \land A_2, \\
 A_1 \leftarrow A_1 \land \neg A_2, \\
 A_1 \leftarrow A_1 \land A_2, \\
 A_2 \leftarrow \neg A_1 \land \neg A_2, \\
 A_2 \leftarrow \neg A_1 \land A_2, \\
 A_2 \leftarrow A_1 \land \neg A_2, \\
 A_2 \leftarrow A_1 \land A_2 \}
\]

Simplified form:

\[
P = \{ A_1, A_2 \leftarrow A_1, A_2 \leftarrow \neg A_1 \land A_2 \}
\]
3-Layer Feed-Forward Networks Revisited

▶ Theorem (Funahashi 1989) Suppose that $\Psi : \mathbb{R} \to \mathbb{R}$ is non-constant, bounded, monotone increasing and continuous. Let $K \subseteq \mathbb{R}^n$ be compact, let $f : K \to \mathbb{R}$ be continuous, and let $\varepsilon > 0$. Then there exists a 3-layer feed-forward network with output function Ψ for the hidden layer and linear output function for the input and output layer whose input-output mapping $\bar{f} : K \to \mathbb{R}$ satisfies

$$\max_{x \in K} |f(x) - \bar{f}(x)| < \varepsilon.$$

▶ Every continuous function $f : K \to \mathbb{R}$ can be uniformly approximated by input-output functions of 3-layer feed-forward networks.

▶ u_k is a sigmoidal unit if

$$\Phi(\vec{i}_k) = p_k = \sum_{j=1}^{m} w_{kj} v_j$$

$$\Psi(p_k) = v_k = \frac{1}{1 + e^{\beta(\theta_k - p_k)}}$$

where $\theta_k \in \mathbb{R}$ is a threshold (or bias) and $\beta > 0$ a steepness parameter.
Backpropagation

- Training set of input-output pairs \(\{(\vec{i}^l, \vec{o}^l) \mid 1 \leq l \leq n\} \).
- Minimize \(E = \sum_l E^l \) where \(E^l = \frac{1}{2} \sum_k (o_k^l - v_k^l)^2 \).
- Gradient descent algorithm to learn appropriate weights.
- Backpropagation

1. Initialize weights arbitrarily.
2. Present input pattern \(\vec{i}^l \) at time \(t \).
3. Compute output pattern \(\vec{v}^l \) at time \(t + 2 \).
4. Change weights according to \(\Delta w_{ij}^l = \eta \delta_i^l v_j^l \), where

 - \(\delta_i^l = \begin{cases}
 \Psi'_i(p_i^l) \times (o_i^l - v_i^l) & \text{if } i \text{ is output unit,} \\
 \Psi'_i(p_i^l) \times \sum_k \delta_k^l w_{ki} & \text{if } i \text{ is hidden unit,}
 \end{cases} \)

 - \(\eta > 0 \) is called learning rate.
Knowledge Based Artificial Neural Networks

- **Towell, Shavlik 1994**: Can we do better than empirical learning?
- Sets of hierarchical logic programs, e.g.,

\[\mathcal{P} = \{ A \leftarrow B \land C \land \neg D, A \leftarrow D \land \neg E, H \leftarrow F \land G, K \leftarrow A, \neg H \}. \]
Knowledge Based Artificial Neural Networks – Learning

- Given hierarchical sets of propositional rules as background knowledge.
- Map rules into multi-layer feed forward networks with sigmoidal units.
- Add hidden units (optional).
- Add units for known input features that are not referenced in the rules.
- Fully connect layers.
- Add near-zero random numbers to all links and thresholds.
- Apply backpropagation.

- Empirical evaluation: system performs better than purely empirical and purely hand-built classifiers.
Knowledge Based Artificial Neural Networks – A Problem

- Works if rules have few conditions and there are few rules with the same head.

\[p_A = p_B = 9\omega \quad \text{and} \quad v_A = v_B = \frac{1}{1 + e^{\beta(9.5\omega - 9\omega)}} \approx 0.46 \quad \text{with} \quad \beta = 1. \]

\[p_C = 0.92\omega \quad \text{and} \quad v_c = \frac{1}{1 + e^{\beta(0.5\omega - 0.92\omega)}} \approx 0.6 \quad \text{with} \quad \beta = 1. \]
Propositional Core Method using Pipolar Sigmoidal Units

- d’Avila Garcez, Zaverucha, Carvalho 1997:
 Can we combine the ideas in Hölldobler, Kalinke 1994 and Towell, Shavlik 1994 while avoiding the above mentioned problem?
- Consider propositional logic language.
- Let I be an interpretation and $a \in [0, 1]$.

$$R(I)[j] = \begin{cases} v \in [a, 1] & \text{if } j \in I, \\ w \in [-1, -a] & \text{if } j \notin I. \end{cases}$$

- Replace threshold and sigmoidal units by bipolar sigmoidal ones, i.e., units with

$$\Phi(\vec{i}_k) = p_k = \sum_{j=1}^m w_{kj}v_j, \quad \Psi(p_k) = v_k = \frac{2}{1 + e^{\beta(\theta_k - p_k)}} - 1,$$

where $\theta_k \in \mathbb{R}$ is a threshold (or bias) and $\beta > 0$ a steepness parameter.
The Task

- How should a, ω and θ_i be selected such that:
 - $v_i \in [a, 1]$ or $v_i \in [-1, -a]$ and
 - the core computes the immediate consequence operator?
Hidden Layer Units

Consider \(A \leftarrow L_1 \land \ldots \land L_n \).

Let \(u \) be the hidden layer unit for this rule.

- Suppose \(I \models L_1 \land \ldots \land L_n \).
 - \(u \) receives input \(\geq \omega a \) from unit representing \(L_i \).
 - \(p_u \geq n \omega a = p_u^+ \).

- Suppose \(I \not\models L_1 \land \ldots \land L_n \).
 - \(u \) receives input \(\leq -\omega a \) from at least one unit representing \(L_i \).
 - \(p_u \leq (n - 1) \omega 1 - \omega a = p_u^- \).

\[\theta_u = \frac{n \omega a + (n - 1) \omega - \omega a}{2} = (na + n - 1 - a)\frac{\omega}{2} = (n - 1)(a + 1)\frac{\omega}{2}. \]
Output Layer Units

- Let μ be the number of clause with head A.
- Consider $A \leftarrow L_1 \land \ldots \land L_n$.
- Suppose $I \models L_1 \land \ldots \land L_n$.
 \[p_A \geq \omega a + (\mu - 1)\omega(-1) = \omega a - (\mu - 1)\omega = p_A^+ \]
- Suppose for all rules of the form $A \leftarrow L_1 \land \ldots \land L_n$ we find $I \not\models L_1 \land \ldots \land L_n$.
 \[p_A \leq -\mu\omega a = p_A^- \]
- $\theta_A = \frac{\omega a - (\mu - 1)\omega - \mu a}{2} = (a - \mu + 1 - \mu a)\frac{\omega}{2} = (1 - \mu)(a + 1)\frac{\omega}{2}$.

Propositional Logic Programs and the Core Method
Computing a Value for a

$\triangleright p_u^+ > p_u^-:
\triangleright n\omega a > (n - 1)\omega - \omega a.$
\triangleright n\omega a + \omega a > (n - 1)\omega.$
\triangleright a(n + 1)\omega > (n - 1)\omega.$
\triangleright a > \frac{n-1}{n+1}.$

$\triangleright p_A^+ > p_A^-:
\triangleright \omega a - (\mu - 1)\omega > -\mu a\omega.$
\triangleright \omega a + \mu a\omega > (\mu - 1)\omega.$
\triangleright a(1 + \mu)\omega > (\mu - 1)\omega.$
\triangleright a > \frac{\mu-1}{\mu+1}.$

\triangleright Consider all rules \rightsquigarrow minimum value for a.

Propositional Logic Programs and the Core Method
Computing a Value for ω

$\Psi(p) = \frac{2}{1 + e^{\beta(\theta - p)}} - 1 \geq a.$

$\frac{2}{1 + e^{\beta(\theta - p)}} \geq 1 + a.$

$\frac{2}{1 + a} \geq 1 + e^{\beta(\theta - p)}.$

$\frac{2}{1 + a} - 1 = \frac{2}{1 + a} - \frac{1 + a}{1 + a} = \frac{1 - a}{1 + a} \geq e^{\beta(\theta - p)}.$

$\ln\left(\frac{1 - a}{1 + a}\right) \geq \beta(\theta - p).$

$\frac{1}{\beta} \ln\left(\frac{1 - a}{1 + a}\right) \geq \theta - p.$

Consider a hidden layer unit:

$\frac{1}{\beta} \ln\left(\frac{1 - a}{1 + a}\right) \geq (n - 1)(a + 1)\frac{\omega}{2} - n\omega a = \frac{na + n - a - 1 - 2na}{2} \omega = \frac{n - 1 - a(n + 1)}{2} \omega.$

$\omega \geq \frac{2}{(n - 1 - a(n + 1))\beta} \ln\left(\frac{1 - a}{1 + a}\right)$ because $a \geq \frac{n - 1}{n + 1}.$

Consider all hidden and output layer units as well as the case that $\Psi(p) \leq -a$: minimum value for $\omega.$
Results

- Relation to logic programs is preserved.
- The core is trainable by backpropagation.
- Many interesting applications, e.g.:
 - DNA sequence analysis.
 - Power system fault diagnosis.
- Empirical evaluation:
 system performs better than well-known machine learning systems.
- See d’Avila Garcez, Broda, Gabbay 2002 for details.
Further Extensions

- Many-valued logic programs
- Modal logic programs
- Answer set programming
- Metalevel priorities
- Rule extraction
Propositional Core Method – Three-Valued Logic Programs

- **Kalinke 1994:** Consider truth values \top, \bot, u.
- Interpretations are pairs $I = \langle I^+, I^- \rangle$.
- Immediate consequence operator $\Phi_P(I) = \langle J^+, J^- \rangle$, where

$$
\begin{align*}
J^+ &= \{ A \mid A \leftarrow L_1 \land \ldots \land L_m \in \mathcal{P} \text{ and } I(L_1 \land \ldots \land L_m) = \top \}, \\
J^- &= \{ A \mid \text{for all } A \leftarrow L_1 \land \ldots \land L_m \in \mathcal{P} : I(L_1 \land \ldots \land L_m) = \bot \}.
\end{align*}
$$

- Let $n = |\mathcal{V}|$ and identify \mathcal{V} with $\{1, \ldots, n\}$.
- Define $R : \mathcal{I} \to \mathbb{R}^{2n}$ as follows:

\[
R(I)[2j - 1] = \begin{cases}
1 & \text{if } j \in I^+ \\
0 & \text{if } j \notin I^+
\end{cases} \quad \text{and} \quad R(I)[2j] = \begin{cases}
1 & \text{if } j \in I^- \\
0 & \text{if } j \notin I^-
\end{cases}
\]
Propositional Core Method – Multi-Valued Logic Programs

For each program \mathcal{P}, there exists a core computing $\Phi_{\mathcal{P}}$, e.g.,

$$\mathcal{P} = \{ C \leftarrow A \land \neg B, \ D \leftarrow C \land E, \ D \leftarrow \neg C \}. $$

Lane, Seda 2004: Extension to finitely determined sets of truth values.
Propositional Core Method – Modal Logic Programs

- Let \mathcal{L} be a propositional logic language plus
 - the modalities \Box and \Diamond, and
 - a finite set of labels w_1, \ldots, w_k denoting worlds.
- Let B be an atom, then $\Box B$ and $\Diamond B$ are modal atoms.
- A modal definite logic program \mathcal{P} is a set of clauses of the form
 \[w_i : A \leftarrow A_1 \land \ldots \land A_m \]
 together with a finite set of relations $w_i \triangleright w_j$, where
 $w_i, 1 \leq i, j \leq k$, are labels and A, A_1, \ldots, A_m are atoms or modal atoms.
- $\mathcal{P} = \bigcup_{i=1}^{k} \mathcal{P}_i$, where \mathcal{P}_i consists of all clauses labelled with w_i.
Modal Logic Programs – Semantics

Example: $\mathcal{P} = \{w_1 : A, w_1 : \Diamond C \leftarrow A\} \cup \{w_2 : B\} \cup \{w_3 : B\} \cup \{w_4 : B\} \cup \{w_1 \triangleright w_2, w_1 \triangleright w_3, w_1 \triangleright w_4, w_2 \triangleright w_4, \}$

Kripke semantics:

$\Diamond C \quad \Box C \\
\Diamond C \quad \Box C \\
\Diamond B \quad \Box B \\
\Box B \quad \Box A \\
\Box B \quad \Box A$

$\mathcal{G} = (W, R, F)$

$\mathcal{F}(C \{w_1\}) = w_4$

$\mathcal{F}(C \{w_1\}) = w_4$
Modal Immediate Consequence Operator

- Interpretations are tuples $I = \langle I_1, \ldots, I_k \rangle$
- Immediate consequence operator $MT_P(I) = \langle J_1, \ldots, J_k \rangle$, where

$$J_i = \begin{array}{l}
\{ A \mid \text{there exists } A \leftarrow A_1 \land \ldots \land A_m \in \mathcal{P}_i \\
\text{such that } \{A_1, \ldots, A_m\} \subseteq I_i \} \\
\cup \{ \Diamond A \mid \text{there exists } w_i \triangleright w_j \in \mathcal{P} \text{ and } A \in I_j \} \\
\cup \{ \Box A \mid \text{for all } w_i \triangleright w_j \in \mathcal{P} \text{ we find } A \in I_j \} \\
\cup \{ A \mid \text{there exists } w_j \triangleright w_i \in \mathcal{P} \text{ and } \Box A \in I_j \} \\
\cup \{ A \mid \text{there exists } w_j \triangleright w_i \in \mathcal{P}, \Diamond A \in I_j \text{ and } f_A(w_j) = w_i \} \end{array}$$
Modal Logic Programs – The Translation Algorithm

- Let \(n = |\mathcal{V}| \) and identify \(\mathcal{V} \) with \(\{1, \ldots, n\} \).
- Let \(a \in [0, 1] \).
- Define \(R : \mathcal{I} \rightarrow \mathbb{R}^{3n} \) as follows:

\[
R(I)[3j - 2] = \begin{cases}
 v \in [a, 1] & \text{if } j \in I_j \\
 w \in [-1, -a] & \text{if } j \notin I_j
\end{cases}
\]

\[
R(I)[3j - 1] = \begin{cases}
 v \in [a, 1] & \text{if } \Box j \in I_j \\
 w \in [-1, -a] & \text{if } \Box j \notin I_j
\end{cases}
\]

\[
R(I)[3j] = \begin{cases}
 v \in [a, 1] & \text{if } \Diamond j \in I_j \\
 w \in [-1, -a] & \text{if } \Diamond j \notin I_j
\end{cases}
\]

- Translation algorithm such that

 - for each world the “local” part of \(MT_{\mathcal{P}} \) is computed by a core,
 - the cores are turned into recurrent networks, and
 - the cores are connected with respect to the given set of relations.
The Example Network

Propositional Logic Programs and the Core Method
First-Order Logic

► Existing Approaches

► Reflexive Reasoning and SHRUTI
► Connectionist Term Representations
 ● Holographic Reduced Representations Plate 1991
 ● Recursive Auto-Associative Memory Pollack 1988
► Horn logic and CHCL Hölldobler 1990, Hölldobler, Kurfess 1992
► Other Approaches

► First-Order Logic Programs and the Core Method

► Initial Approach
► Construction of Approximating Networks
► Topological Analysis and Generalisations
► Employing Iterated Function Systems
Reflexive Reasoning

- Humans are capable of performing a wide variety of cognitive tasks with extreme ease and efficiency.
- For traditional AI systems, the same problems turn out to be intractable.
- Human consensus knowledge: about 10^8 rules and facts.
- Wanted: “Reflexive” decisions within sublinear time.
- Shastri, Ajjanagadde 1993: SHRUTI.
SHRUTI – Knowledge Base

▶ Finite set of constants C, finite set of variables \mathcal{V}.

▶ Rules:

$$(\forall X_1 \ldots X_m)(p_1(\ldots) \land \ldots \land p_n(\ldots)) \rightarrow (\exists Y_1 \ldots Y_k p(\ldots)).$$

$\exists \ p, \ p_i, 1 \leq i \leq n$, are multi-place predicate symbols.

$\exists \ Arguments of the \ p_i: \ variables \ from \ \{X_1, \ldots, X_m\} \subseteq \mathcal{V}.$

$\exists \ Arguments of \ p \ are \ from \ \{X_1, \ldots, X_m\} \cup \{Y_1, \ldots, Y_k\} \cup C.$

$\exists \ \{Y_1, \ldots, Y_k\} \subseteq \mathcal{V}.$

$\exists \ \{X_1, \ldots, X_m\} \cap \{Y_1, \ldots, Y_k\} = \emptyset.$

▶ Facts and queries (goals):

$$\exists Z_1 \ldots Z_l \ q(\ldots).$$

$\exists \ Multi-place \ predicate \ symbol \ q.$

$\exists \ Arguments of \ q \ are \ from \ \{Z_1, \ldots, Z_l\} \cup C.$

$\exists \ \{Z_1, \ldots, Z_l\} \subseteq \mathcal{V}.$
Further Restrictions

- Restrictions to rules, facts, and goals:
 - No function symbols except constants.
 - Only universally bound variables may occur as arguments in the conditions of a rule.
 - All variables occurring in a fact or goal occur only once and are existentially bound.
 - An existentially quantified variable is only unified with variables.
 - A variable which occurs more than once in the conditions of a rule must occur in the conclusion of the rule and must be bound when the conclusion is unified with a goal.
 - A rule is used only a fixed number of times.

Incompleteness.
SHRUTI – Example

Rules
\[\mathcal{P} = \{ \begin{align*}
 & \text{owns}(Y, Z) \leftarrow \text{gives}(X, Y, Z), \\
 & \text{owns}(X, Y) \leftarrow \text{buys}(X, Y), \\
 & \text{can-sell}(X, Y) \leftarrow \text{owns}(X, Y), \\
 & \text{gives}(\text{john}, \text{josephine}, \text{book}), \\
 & (\exists X) \text{buys}(\text{john}, X), \\
 & \text{owns}(\text{josephine}, \text{ball})
\} \]

Queries:
\[\begin{align*}
 & \text{can-sell}(\text{josephine}, \text{book}) \rightarrow \text{yes} \\
 & (\exists X) \text{owns}(\text{josephine}, X) \rightarrow \begin{cases}
 \text{yes} & \{X \mapsto \text{book}\} \\
 & \{X \mapsto \text{ball}\}
 \end{cases}
\]
SHRUTI : The Network
Solving the Variable Binding Problem

First-Order Logic
SHRUTI – Remarks

- Answers are derived in time proportional to depth of search space.
- Number of units as well as of connections is linear in the size of the knowledge base.
- Extensions:
 - compute answer substitutions
 - allow a fixed number of copies of rules
 - allow multiple literals in the body of a rule
 - built in a taxonomy

- Biological plausibility.
- Trading expressiveness for time and size.
- Logical reconstruction by Beringer, Hölldobler 1993:
 - Reflexive reasoning is reasoning by reduction.
First-Order Logic Programs and the Core Method

- Initial Approach
- Construction of Approximating Networks
- Topological Analysis and Generalisations
- Employing Iterated Function Systems
Logic Programs

- A logic program \mathcal{P} over a first-order language \mathcal{L} is a finite set of clauses

$$A \leftarrow L_1 \land \ldots \land L_n,$$

where A is an atom, L_i are literals and $n \geq 0$.

- $B_{\mathcal{L}}$ is the set of all ground atoms over \mathcal{L} called Herbrand base.

- A Herbrand interpretation I is a mapping $B_{\mathcal{L}} \rightarrow \{\top, \bot\}$.

- $2^{B_{\mathcal{L}}}$ is the set of all Herbrand interpretations.

- ground(\mathcal{P}) is the set of all ground instances of clauses in \mathcal{P}.

- Immediate consequence operator $T_\mathcal{P} : 2^{B_{\mathcal{L}}} \rightarrow 2^{B_{\mathcal{L}}}$:

$$T_\mathcal{P}(I) = \{ A \mid \text{there is a clause } A \leftarrow L_1 \land \ldots \land L_n \in \text{ground}(\mathcal{P}) \text{ such that } I \models L_1 \land \ldots \land L_n \}.$$

- I is a supported model iff $T_\mathcal{P}(I) = I$.

First-Order Logic Programs and the Core Method
The Initial Approach

- Hölldobler, Kalinke, Störr 1999:
 Can the core method be extended to first-order logic programs?

- Problem

 - Given a logic program \mathcal{P} over a first order language \mathcal{L} together with $T_{\mathcal{P}} : 2^{B_{\mathcal{L}}} \rightarrow 2^{B_{\mathcal{L}}}$.
 - $B_{\mathcal{L}}$ is countably infinite.
 - The method used to relate propositional logic and connectionist systems is not applicable.
 - How can the gap between the discrete, symbolic setting of logic, and the continuous, real valued setting of connectionist networks be closed?
The Goal

- Find $R : 2^B \rightarrow \mathbb{R}$ and $f_P : \mathbb{R} \rightarrow \mathbb{R}$ such that the following conditions hold.

 - $T_P(I) = I'$ implies $f_P(R(I)) = R(I')$.
 - $f_P(x) = x'$ implies $T_P(R^{-1}(x)) = R^{-1}(x')$.

 $\Rightarrow f_P$ is a sound and complete encoding of T_P.

 - T_P is a contraction on 2^B iff f_P is a contraction on \mathbb{R}.

 \Rightarrow The contraction property and fixed points are preserved.

 - f_P is continuous on \mathbb{R}.

 \Rightarrow A connectionist network approximating f_P is known to exist.
Acyclic Logic Programs

Let \(\mathcal{P} \) be a program over a first order language \(\mathcal{L} \).

A level mapping for \(\mathcal{P} \) is a function \(l : B_\mathcal{L} \rightarrow \mathbb{N} \).

- We define \(l(\neg A) = l(A) \).

We can associate a metric \(d_\mathcal{L} \) with \(\mathcal{L} \) and \(l \). Let \(I, J \in 2^{B_\mathcal{L}} \):

\[
d_\mathcal{L}(I, J) = \begin{cases}
0 & \text{if } I = J \\
2^{-n} & \text{if } n \text{ is the smallest level on which } I \text{ and } J \text{ differ.}
\end{cases}
\]

- **Proposition (Fitting 1994)** \((2^{B_\mathcal{L}}, d_\mathcal{L}) \) is a complete metric space.

- \(\mathcal{P} \) is said to be acyclic wrt a level mapping \(l \), if for every \(A \leftarrow L_1 \land \ldots \land L_n \in \text{ground}(\mathcal{P}) \) we find \(l(A) > l(L_i) \) for all \(i \).

- **Proposition** Let \(\mathcal{P} \) be an acyclic logic program wrt \(l \) and \(d_\mathcal{L} \) the metric associated with \(\mathcal{L} \) and \(l \), then \(T_\mathcal{P} \) is a contraction on \((2^{B_\mathcal{L}}, d_\mathcal{L}) \).
Mapping Interpretations to Real Numbers

- Let $D = \{ r \in \mathbb{R} \mid r = \sum_{i=1}^{\infty} a_i 4^{-i}, \text{ where } a_i \in \{0, 1\} \text{ for all } i \}$.
- Let l be a bijective level mapping.
- $\{\top, \bot\}$ can be identified with $\{0, 1\}$.
- The set of all mappings $B_L \rightarrow \{\top, \bot\}$ can be identified with the set of all mappings $\mathbb{N} \rightarrow \{0, 1\}$.
- Let I_L be the set of all mappings from B_L to $\{0, 1\}$.
- Let $R : I_L \rightarrow D$ be defined as
 $$R(I) = \sum_{i=1}^{\infty} I(l^{-1}(i)) 4^{-i}.$$
- Proposition R is a bijection.

We have a sound and complete encoding of interpretations.
We define $f_P : \mathcal{D} \rightarrow \mathcal{D} : r \mapsto R(T_P(R^{-1}(r)))$.

We have a sound and complete encoding of T_P.

Proposition Let P be an acyclic program wrt a bijective level mapping. f_P is a contraction on \mathcal{D}.

Contraction property and fixed points are preserved.
Approximating Continuous Functions

- **Corollary** f_P is continuous.

- **Recall Funahashi’s theorem:**

 > Every continuous function $f : K \rightarrow \mathbb{R}$ can be uniformly approximated by input-output functions of 3-layer feed forward networks.

- **Theorem** f_P can be uniformly approximated by input-output functions of 3-layer feed forward networks.

 > T_P can be approximated as well by applying R^{-1}.

Connectionist network approximating immediate consequence operator exists.
An Example

Consider $P = \{q(0), q(s(X)) \leftarrow q(X)\}$ and let $l(q(s^n(0))) = n + 1$.

- P is acyclic wrt l, l is bijective, $R(B_L) = \frac{1}{3}$.
- $f_P(R(I)) = 4^{-l(q(0))} + \sum_{q(X) \in I} 4^{-l(q(s(X)))}
 = 4^{-l(q(0))} + \sum_{q(X) \in I} 4^{-l(q(X)) + 1} = \frac{1 + R(I)}{4}$.

Approximation of f_P to accuracy ε yields

$$f^\varepsilon(x) \in \left[\frac{1 + x}{4} - \varepsilon, \frac{1 + x}{4} + \varepsilon\right].$$

Starting with some x and iterating f^ε yields in the limit a value

$$r \in \left[\frac{1 - 4\varepsilon}{3}, \frac{1 + 4\varepsilon}{3}\right].$$

Applying R^{-1} to r we find

$$q(s^n(0)) \in R^{-1}(r) \text{ if } n < -\log_4 \varepsilon - 1.$$
Approximation of Interpretations

- Let \mathcal{P} be a logic program over a first order language \mathcal{L} and l a level mapping.
- An interpretation I approximates an interpretation J to a degree $n \in \mathbb{N}$ if for all atoms $A \in B_\mathcal{L}$ with $l(A) < n$ we find $I(A) = \top$ iff $J(A) = \top$.

\[
I \text{ approximates } J \text{ to a degree } n \text{ iff } d_\mathcal{L}(I, J) \leq 2^{-n}.
\]
Approximation of Supported Models

- Given an acyclic logic program \mathcal{P} with bijective level mapping.
- Let T_P be the immediate consequence operator associated with \mathcal{P} and M_P the least supported model of \mathcal{P}.
- We can approximate T_P by a 3-layer feed forward network.
- We can turn this network into a recurrent one.

Does the recurrent network approximate the supported model of \mathcal{P}?

Theorem For an arbitrary $m \in \mathbb{N}$ there exists a recursive network with sigmoidal activation function for the hidden layer units and linear activation functions for the input and output layer units computing a function \overline{f}_P such that there exists an $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$ and for all $x \in [-1, 1]$ we find

$$d_L(R^{-1}(\overline{f}_P^n(x)), M_P) \leq 2^{-m}.$$
Literature

